عارضه‌ی‌ای عملکرد تحقیق و توسعه کشور در
دو بخش تولید و انتشار علم با استفاده از تحلیل
پوششی داده‌های شبکه‌ای (Network DEA)

محمدحسین طبری‌مهرچردي١ | کارشناس ارشد مدیریت صنعتی
حمید بازی خیبی۱ | کارشناس ارشد مدیریت صنعتی
سمه جاودی۲ | کارشناس ارشد مدیریت صنعتی

چکیده: در عصر جهانی سازی و رقابت شدید، سازمان‌های تحقیق و توسعه
ملی در تغییر شدیدی جهت تDECLوتوی افزایش کارایی دولت‌ها و
زبانی که بهبود از سرمایه‌های ملی بر روی مراکز تحقیق و توسعه سرمایه‌گذاری
می‌شود، این مراکز باید پاسخگویی در قالب عملکرد بیشتر به جامعه
معرفی کند. این کارگاه نسبت به عملکرد تحقیق و توسعه بخش
علم و مهندسی ایران در دو بخش تولید و انتشار علم با استفاده از
سازوارکاری "پوششی داده‌های شبکه‌ای" است. این بین، عملکرد تحقیق و توسعه
"پخشی پوششی داده‌ها" است. از این بین، عملکرد تحقیق و توسعه
کشور منطقه استخراج شد. در این راستا، برای ارزیابی کارایی نسبی آنها در
بخش تولید علم، از ورودی‌های ممکن که صورت گرفته در رشته‌های علم و
مهندسی، تعادل پوششی‌گران تحقیق و توسعه، هزینه تحقیق و توسعه و
خرج‌های ممکن از عملکرد تعادل تحقیق و توسعه و
درایاقتیبینالملی و در بخش انتشار علم، از ورودی‌های تعادل ممکن و
مهندسی و پوششی‌هایت تحقیق و توسعه درایاقتیبینالملی و خروج‌های ممکن
صادروی‌های پوششی و مانگین ارائه بر مبانی انتخاب شد. و نتیجه
داده که در بخش تولید علم، از 14 کشور تحت پوششی تعادل چهار کشور و در
بخش انتشار علم، تعادل نشان دهنده کشورها که از این کشورها ممکن نبوده است.
از نتایج قابل تأمل این بود که ایران در بخش تولید علم از جایگاه در نسبت
کشورهای ممکن بیشترین است، ولی در بخش انتشار علم وضعیت است
پیش‌ترین کارکرد از مدل تحلیل پوششی داده‌ها به‌دست آورد.

کلیدواژه‌ها: کارایی نسبی، تحقیق و توسعه، تحلیل پوششی داده‌ها، تحلیل
پوششی داده‌های شبکه‌ای
1. مقدمه
ارزیابی عملکرد، فرآیندی است که این فرآیند را به سازمان‌های مدیریت و آکادمیک توجه روزافزونی می‌باشد. در یکی از پژوهش‌های انجام شده (Kuang and Chen 2010; Guan and Chen 2010) کنید، نمی‌توانید آن را درک کنید. در اگر نتایج چیزی را درک کنید، نمی‌توانید آن را گفتند. (Guan and Chen 2010).

پیکر از یکی از بخش‌هایی که ارزیابی عملکرد برای آن لازم و ضروری به تأکید می‌رسد، بخش تحقیق و توسه هر کشور است. این بخش با نگارگری سرماهی انسانی و با توجه به موجودی داشت، دانش جدیدی در تولید می‌نماید و طرح‌های جدید را به تولید کنندگان ارائه می‌دهد (Riebs6 1348). در کمیسیون صنایع سال 1994، تحقیق و توسه را یکی دانسته و یک محرک مهم در رشد اقتصادی هر کشور دانستند (Hirons, Simon, and Simon 1998). انحیادمانی نظر درآمکن، عصر حاضر را عصر جوامع، اقتصادها، و نهادهای مثبت بر دانش می‌داند و معتقدند. توسه ملی و ارتقای جامعه‌ها دیده در رقابت‌های جهانی در گروه تولید، و به کارگیری دانش است (مهدي و همکاران 1388). تقلید‌های تحقیق و توسه علاوه بر توانایی فرد زمینی، ایجاد ارتباطات غیررسمی، مشترک‌سازی در شیک‌های بین‌مللی و سازواری انتقال دانش و مواردی از این قبل ایجاد می‌کند. در سال‌های 1989 و 1990، کون و لوینتال به یک دنباله راهبردی که تحقیق و توسه باعث افزایش طبیعت جذب شکوه‌های دانش‌پژوهان الگویی شدند. توانایی نوآوری و جذابیت استخراج اطلاعات جدید از محفظه دانشی به نظر خواهد شد.

این منجر به نیاز به روش‌های جدید و بهبود قابلیت‌های سازمان‌ها و همچنین، افزایش بهرهوری و کارآیی و مزایای قابلیتی در بازار می‌شود (Kulatunga, Amarasingha, and Haigh 2007).

کمک به سازمان‌های مدیریتی در تحقیق و توسه در یکی از مهم‌ترین عناصر پیشرفت علمی و قانع‌آمیز است، که شکوهی که از منابع به صورت ناگهانی استفاده کنند، جریمه‌ها پیشرفت کننده است، به گونه‌ای که سازمان‌های مدیریتی باید در چنین شرایطی، کمک کننده در ایجاد پیشرفت خواهد کرد (Wang 2007; Wang and Hunng 2007).

ایران همانند سایر کشورها، خود را نیازمند پیشرفت در حوزه فناوری و نوآوری می‌داند. و
شکل‌گیری نهادهای مرتب در این زمینه، جهت پیشرفت منحنی استفاده و علمی مانند قانون
برنامه چهارم، سند مقدماتی، مقدمات جامع علمی کشور و تعیین نیاز مدیران ارشد نظام بر نوآوری
از جمله تأکیدهای شکل‌گیری بر اهمیت موضوع است. با توجه به اهمیت عملکرد تحقیق و توسعه و
ضرورت مدیریت آن در سطح ملی و همچنین، تمایل فعال به رشد کشورها به‌وسیله شکل‌گیری
همسایه و منطقه در این زمینه، در اختیار داشتن اطلاعات پایه‌ای که توانایی تصویری از وضعیت
عملکرد تحقیق و توسعه را در میان کشورها به‌نمایش گذارد، ضروری است. در واقع، شناخت
وضعیت و چاپگاه عملکرد تحقیق و توسعه کشور در سطح بين‌المللی مقدمه‌ای برای ورود به
مسیر توسعه طرفت نوآوری و دستیابی به هدف ایران ۱۴۰۴ است (پیکری و همکاران ۱۳۹۰).
لذا باید اشکال که تاکنون چارچوب و معاون‌های مشخصی برای ارزیابی کارایی
عملکرد تحقیق و توسعه کشور چه در سطح داخلی و چه در سطح بین‌المللی شناسایی نشده
است. در حال حاضر، در بخش اقدامات پژوهشی، توجه زیادی به تأیین مقالات پژوهشی، به
اختلافات و اقداماتی از این نموده می شود، در حالی که فاصله بین فاکتور آورده تحقیق و توسعه که
مربوط به کارگیری و انتشار کارهای پژوهشی در بخش داخلی و بین‌المللی است، توجه کافی
نشد. است. مراکز کارآفرینی و مراکز رشد دانشگاه‌ها نیز بیشتر توجه شان به پژوهش‌های
پژوهشگران است و بر روی کاربردی گرد کننده پژوهش‌های آنها توجه کافی ندارند. اگر بدهد
توجه کافی بر بعد انتشار به کارگیری ایده‌ها جدید، فقط به بعد توسیع آن توجه نشود، در
این صورت نمی‌تواند منجر به بهبود علم و فناوری جامعه شود. بنابراین، به کارگیری روشنی که
نهاده‌ها و مستندسازهای مرحله مختلف فرا آورده تحقیق و توسعه را مدل نظر قرار دهد و در نهایت,
کارایی نسبی عملکرد تحقیق و توسعه سازمان‌ها و کشورها را بنرچ، راه‌های مناسب برای حل
این مسئله است.
در نتیجه این مقاله، کارایی "تحلیل پوششی داده‌های شبکه‌ای" در علوم بیماری
و تحلیل کارایی نسبی عملکرد تحقیق و توسعه پژوهش علوم و مهندسی کشورهای منطقه و تجهیز
چاپگاه ایران در آن در دو مرحله تولید و انتشار علم است. مدل‌های تحلیل پوششی داده‌های
شبکه‌ای، کارایی کلی سازمان و کارایی هر کدام از زیرفرآیندهای یک سازمان را بررسی و تعیین
می‌کند. در مدل‌های تحلیل پوششی داده‌های شبکه‌ای، به‌جای تجزیه سلسله مراحلی، فاصله‌ی
ez منطقه‌ای شبکه‌ای کمک گرفته شده است (Hsieh and Lin 2010). در ادامه، پس از مرور مباحث

1. Network DEA
نظری در زمینه روبیکر تحلیل پوششی داده‌ها و بیشینه ارزیابی عملکرد مراکز و طرح‌های تحقق و توسعه، به شرح روش پژوهش مورد استفاده در این مقاله سپس به تجزیه و تحلیل نتایج پرداته متود و در نهایت، با جمع‌نمود و ارائه نتایج حاصل از این پژوهش، مقاله به پایان می‌رسد.

2. تحلیل پوششی داده‌ها

تحلیل پوششی داده‌ها به عنوان یکی از فنون برنامه‌ریزی غیرپارامتریک محصول می‌شود که به طور گسترده‌ای، به مسئله ارزیابی کارآیی واحدهای مشابه مورد استفاده قرار می‌گیرد. با فرض اینکه m واحد تخصصی گیری با s ورودی و s خروجی وجود داشته باشد، کارآیی نسبی y یکی از واحدهای تخصصی گیری با حاصل مدل برنامه‌ریزی کردن زیر به‌دست می‌آید.

(Charnes, Cooper, and Rhodes 1978)

$$
\begin{align*}
\max z &= \sum_{i=1}^{m} u_i y_i \\
\text{s.t.} \quad \sum_{j=1}^{n} x_{ij} v_{ij} &\leq 1, \quad i = 1, 2, ..., n \\
\quad & \sum_{i=1}^{m} v_{ij} y_i \geq u_j, \quad j = 1, 2, ..., s \\
\quad & u_j \geq 0, \quad r = 1, 2, ..., s \\
\quad & v_{ij} \geq 0, \quad i = 1, 2, ..., m
\end{align*}
$$

در مدل بالا، x_{ij} مقدار خروجی j در برابر واحد تخصصی i را و y_i وزن تخصصی داده‌شده به خروجی i را و u_j وزن تخصصی داده‌شده به ورودی j را در به عنوان امتیاز کارآیی واحد تحت ارزیابی است. در این مدل، امتیاز کارآیی هر واحد تحت بررسی از تخصیص مجموع موزون خروجی با مجموع موزون ورودی به‌دست می‌آید که این امتیاز برای یکی شود، آن واحدهای کارآی را در صورتی که کمتر از یک یا بیشتر از یک یا بیشتر به‌دست می‌آید.

1. Data Envelopment Analysis (DEA)
فرض بارزده نامیده شده است که فرض بارزده نمی‌تواند مورد استفاده قرار گیرد و مدل ارزیابی نتواند به منظور پیش‌بینی نتایج سطح خروجی ها مورد استفاده قرار گیرد. این مدلها به صورت زیر تعیین می‌شود:

\[
\begin{align*}
\text{Max} & = \sum_{r=1}^{s} u_r y_{ro} \\
\text{st:} & \\
\sum_{i=1}^{m} v_i x_{io} & = 1 \\
\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} & \leq 0, \\
u_r & \geq 0, \quad r = 1, 2, \ldots, s \\
v_i & \geq 0, \quad i = 1, 2, \ldots, m
\end{align*}
\]

Mدل BCC

Mدل CRS

همچنین مدل دیگر، مدل ارزیابی مقدار بارزده نمی‌تواند به منظور پیش‌بینی نتایج سطح خروجی ها مورد استفاده قرار گیرد. این مدلها به صورت زیر تعیین می‌شود:

\[
\begin{align*}
\text{Max} & = \sum_{r=1}^{s} u_r y_{ro} + w \\
\text{st:} & \\
\sum_{i=1}^{m} v_i x_{io} & = 1 \\
\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} + w & \leq 0, \\
u_r & \geq 0, \quad r = 1, 2, \ldots, s \\
v_i & \geq 0, \quad i = 1, 2, \ldots, m \\
w & \text{free in sign}
\end{align*}
\]

1. Banker, Charnes, and Cooper
2. Promethee

\[
\begin{align*}
\text{Banker, Charnes, and Cooper (1978)} & \\
\text{Promethee} &
\end{align*}
\]
نشان داد براساس شاخه‌ای نوآوری، لبنان و گرجستان و امارات متحده عربی در گروه کشورهای با وضعیت نوآوری خوب و عمان و پاکستان و سوئیس در گروه کشورهای با وضعیت نوآوری ضعیف قرار گرفتند. براساس نتایج این مطالعه، ایران در میان کشورهای مورد مطالعه در حدم وسط و میانه قرار داشت.

در پژوهش ونگ و هانگ، با به کارگیری فن تحلیل یوشیشی داده‌ها بررسی کارایی نسبی اقدامات تحقیق و توسعه در 30 کشور پرداخته شد. در این بررسی، هزینه‌های تحقیق و توسعه و بروزرسانی در گیرگیر در فرآیند به عنوان ورودی و پردازش لایه اختراع‌ها و اشکال‌های دانشگاهی نظر مقالات به عنوان خرید مدل در نظر گرفته شد. براساس نتایج به‌دست‌آمده، حدود یک سوم از کشورهای دارای کارایی مناسب هستند و دو سوم نیز در مرحله افزایش بازده نسبت به مقیاس هستند (Wang and Huang 2007).

در پژوهش اندرسون، سیم، و لاوری برای اندوزه کارایی انتقال فناوری، 45 دانشگاه با استفاده از تحلیل یوشیشی داده‌ها از ورودی‌های همچون کل هزینه‌های تحقیق و توسعه و خروجی‌های همچون درآمد حاصل از مجوزها، توان‌نامه‌های تجاری، شرکت‌های راه‌اندازی شده، اختراعات بپرهیزش، و اختراعات منترشده استفاده شده است (Anderson, Daim, and Lavoie 2007).

در پژوهش هاشیموتو و هاندا روند کارایی تحقیق و توسعه دروسازی در طی دهه 1983-1992 با استفاده از روش‌های تحلیل یوشیشی داده‌ها و ورودی‌های همچون کل هزینه‌های تحقیق و توسعه و خروجی‌های همچون تعداد حق اختراعاتی که در سال منجری می‌شود، سرعت دارویی سالانه و سود ناخالص سالانه استفاده شده است. با توجه به نتایج این پژوهش، کارایی تحقیق و توسعه این صنعت در سال 1992 به 50 درصد مقدار خود در شروع دهه 1983 رشد است و تعداد کمی از شرکت‌های خلاق باقی مانده‌اند (Hashimoto and Haneeda 2008).

در پژوهش ایلات، گولانی، و شتوپ کارایی نسبی طرح‌های تحقیق و توسعه در طی مراحل جدید طرح‌های مورد بررسی قرار گرفتند. در این پژوهش، از روش‌های تحلیل یوشیشی داده‌ها و کارای استراتژی متوان استفاده شده است. در این پژوهش، از آن جنبه کارت استراتژی منفی شامل جنبه‌های مالی، مشتری، فرآیندهای داخلی کسب و کار، رشد و بایگانی، و جنبه عدم اطمینان و ورودی آن می‌باشد. نتایج هدف‌گذاری‌شده توسط می‌شود (Eilat, Golany, and Shub 2008).
سلسله مربوط به تحلیل پوشه‌های داده‌ها را جهت ارزیابی سازمان‌های تحقیق و توسعه هند استفاده کرده‌اند. در این پژوهش، به منظور قابلیت اجرا، قابلیت کنترل و قابلیت مدل، در نهایت
از میان مجموعه ورودی‌ها و خروجی‌های این شده، شش مقیاس خروجی و پیک مقیاس ورودی
با نظری سازمان‌های انتخاب گردید. شش معیار خروجی مقالات منتشرشده، حق امتیاز‌ها، جریان
نقدی ایجاد شده، توسعه محصول، فرآیند با فناوری، مدارک و دکتری اطلاع‌شناسی و جوایز
کسب شده توسط سازمان‌های پژوهشی و معیار ورودی انتخاب شده را نیز بودجه سالانه تحلیل و
شکل‌گیری می‌دهد (2008).

در پژوهش که توسط لی، پارک و چوی در کشور کره انجام شده، عملکرد نسبی
برنامه‌های تحقیق و توسعه‌ای که مورد حمایت دولت قرار دارند از نظر هدف ناهمگونی، با
استفاده از روش‌کرک تحلیل پوشه‌ای داده‌ها مورد ادعا می‌گردد. ورودی‌های مدل
عبارت بود از میزان سرمایه‌گذاری و تعداد پژوهشگران مدرک دکتری و خروجی‌های مدل به
سه دسته مقالات، اختراعات و منابع انسانی تقسیم می‌شد. در این پژوهش، 4880 ترجمه و
توسعه که تا سال 2005 انجام یافته‌اند، مورد ارزیابی قرار گرفته‌اند و در نهایت، شکل برنامه
تحقیق و توسعه مورد حمایت دولت رتی‌بندی شدند (2009).

در پژوهش که توسط لیو ول ترجمه گرفت، کارایی مؤسسات تحقیق و توسعه تاوان با
استفاده از تحلیل پوشه‌ای داده‌ها با روش‌کرک می‌شود بر شکل دو مرحله‌ای، ادعا می‌گردد. در این
پژوهش، از مدل بازد متنی مشابه با روشکرک خروجی محور انتخاب شده است. نتایج حاصل
از اجرای چدایانه و مدل تحلیل پوشه‌ای داده‌ها بین دو صورت، 8 مسئله در مرحله
توسعه فناوری و 18 مسئله در مرحله انتشار فناوری کارا بودند (2009).

در پژوهش که توسط وول و همکاران ترجمه گرفت، قاری این پژوهش‌ها توسعه فناوری را
بصورت دو مرحله تحقیقی و توسعته و انتشار فناوری در نظر گرفتند و سپس، عملکرد
برنامه‌های توسعه فناوری را با استفاده از تحلیل پوشه‌ای داده‌های مربوط به سه‌ماجی نمودند. در
مرحله 1، توانایی برنامه‌های توسعه فناوری در ابزار انتشارات، پردازش نرم‌افزارهای
و کسب
فناوری و در مرحله 2، توانایی برنامه‌های توسعه فناوری در انتشار فناوری ادعا می‌گردید. نتایج
این پژوهش حاکی از این است که عملکرد تحقیق و توسعه بهتر از انتشار فناوری است
(Liu and Hung 2010).

با توجه به مطالعه مقالات مرتبط با تحقیق و توسعه، فرآیند تحقیق و توسعه دستکم از دو
زیر فاکتور اصلی توسعه فناوری و انتشار فناوری تأثیرگذار شده است. بنابراین، ارزیابی عملکرد
الف: تحقیق و توسیع در هر یک از بخش باعث خواهند شد که به نشانه‌های ضعف‌ها و آزاده در هر یک از بخش‌ها و اقدامات لازم جهت بهبود عملکرد آن‌ها پرداخته شود. از سویی دیگر، با توجه به مطالعات گذشته در این حوزه، روش تحلیل پوششی داده‌ها نیز به عنوان یک ابزار دقیق در ارزیابی واحدهای تحقیق و توسیع شناسایی شده است. همچنین، با توجه به حضور زیرفرا آینده‌ای در حوزه تحقیق و توسیع، به کارگیری فن تحلیل پوششی داده‌های شبکایی در مقایسه با تحلیل پوششی داده‌های پایه مناسب است خواهد بود.

4. روش یوزه‌ش

هدف از این پژوهش کارست تحلیل پوششی داده‌های شبکایی در عرضه پایایی عملکرد تحقیق و توسیع کشور در منطقه است. کشورهای مورد آزمون برنامه دستوری به اطلاعات برای معیارهای انتخابی تغییر گردید و در نهایت از میان آن‌ها، 14 کشور ایران، ارمنستان، آذربایجان، گرجستان، اردن، فلسطین، فلسطین، لبنان، عمان، پاکستان، عربستان، سوریه، ترکیه و امارات انتخاب شده است که این کشورها پراکنش و ترکیب مناسبی از کشورهای منطقه خاورمیانه، آسیای مرکزی، منطقه فقه‌ای، کشورهای عربی آسیای جنوب غربی و دیگر کشورهای مستقل هستند (بخشی و همکاران، 1390).

اینکا با مرجع مؤثر معیارهای عملکرد تحقیق و توسیع کشورهای منتبه شناسایی شد. بسیاری از این مشاهده آن‌ها که نداشته مالی یا کمیته‌سازی، کمیته‌های کمی‌تارها مستقل هستند (بخشی و همکاران، 1390).

1. Network DEA
در مرحله بعد، با استفاده از فنّ تحلیل پویشی داده‌ها و با نظر گرگفت ترکیبات ورودی‌ها و خروجی‌ها، کارایی عملکرد تحقیق و توسیع کشورهای متعاقب سنجیده شد. در واقع، ارزیابی کارایی عملکرد تحقیق و توسیع در دو مرحله سنجیده می‌شود. در مرحله اول (مرحله تولید علم) ورودی‌های مدل تحلیل پویشی داده‌ها، نرخ نیست‌نام در رشته‌های علم و مهندسی (درصدی)، تعداد پژوهشگران تحقیق و توسیع (در ازاری میلیون نفر جمعیت)، و هزینه تحقیق و توسیع (درصدی از تولید ناخالص داخلی) و خروجی‌های این مرحله تعداد مقالات علمی و مهندسی (در ازاری میلیون نفر جمعیت) و پروانه‌نیست اخراج دریافتی بین المللی (در ازاری میلیون نفر جمعیت) را تکان می‌دهند. همچنین، ورودی‌های مرحله دوم (مرحله انتشار علم)، تعداد مقالات علمی و مهندسی (در ازاری میلیون نفر جمعیت) و پروانه‌نیست اخراج دریافتی بین المللی (در ازاری میلیون نفر جمعیت) و خروجی‌های آن، صادرات فاکتوری پیشرفت (درصدی از صادرات صنعتی) و میانگین ارجاع به مقالات (به ازاری هر مقاله) را تکان می‌دهند. لازم به اشاره است که دوره زمانی این متغیرها مربوط به سال‌های 2005، 2006 و 2007 است و اطلاعات لازم در این زمینه از منبع (بخشی و همکاران ۱۳۹۰) اتخاذ گردیده. همچنین، برای تحلیل داده‌ها از نرم‌افزار WINQSB استفاده شد.

5. نتایج و باندها

در این پژوهش، مدل BCC خروجی محور از سایر مدل‌های تحلیل پویشی داده‌ها به کار گرفته شده است. دلیل انتخاب خروجی محور آن است که کشورها مقیاس ثابتی از منابع مالی بوده، محقق و ... در اختیار دانگ، اما خروجی حداکثر از بخش تحقیق و توسیع آنها خواسته می‌شود. از این رو، کشورها در تعیین میزان ورودی‌های خود نقش چندانی ندارند، ولی
خروجی هایشان به فعالیت ها و نحوه تخصیص منابع به بخش های مختلف بستگی دارند. از این رو برای ارزیابی آن‌ها مدل‌های خروجی محور مناسب تر است. اما مدل BCC نژاد می‌شود. جهت انتخاب می‌شود که دلیل دال بر باید ثابت به مقياس در کارگردانی فعالیت‌هاي تحقیق و توسعه کشورها وجود دارد، با این نظر، سایر تعیین نشده. نتایج ارزیابی دو مرحله در جدول‌های ۱ و ۲ خلاصه شده است.

جدول ۱. محاسبه میزان کارایی عملکرد تحقیق و توسعه کشورها مربوطه در مرحله تولید علم

<table>
<thead>
<tr>
<th>کشور</th>
<th>مرحله ۱ (تولید علم)</th>
<th>کارایی</th>
<th>واحد های مرجع</th>
<th>ایران</th>
<th>ارمنستان</th>
<th>ترکیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
<tr>
<td>ارمنستان</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
<tr>
<td>ترکیه</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
</tbody>
</table>

جدول ۲. محاسبه میزان کارایی عملکرد تحقیق و توسعه کشورها مربوطه در مرحله انتشار علم

<table>
<thead>
<tr>
<th>کشور</th>
<th>مرحله ۲ (انتشار علم)</th>
<th>کارایی</th>
<th>واحد های مرجع</th>
<th>ایران</th>
<th>ارمنستان</th>
<th>ترکیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
<tr>
<td>ارمنستان</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
<tr>
<td>ترکیه</td>
<td>۱</td>
<td>بدلی اینه حاصل کارایی</td>
<td>اصلا است، باید</td>
<td>ارمنستان</td>
<td>۹۴</td>
<td>۳۹ /۰</td>
</tr>
</tbody>
</table>

←
در این قسمت، برای تشریح چگونگی محاسبه اعداد جدول‌های ۱ و ۲ به ارائه یک مثال از این موارد پرداخته می‌شود. فرض می‌شود که هدف محاسبه کارایی بخش تحقیق و توسعه ایران در یک تولید علم است. مدل خروجی محور طراحی شده، ایران برای این مرحله به صورت زیر است:

\[
\begin{align*}
Minz &= 40.52v_1 + 1272v_2 + 0.59v_3 + w \\
&= 38.14u_1 + 0.02u_2 = 1
\end{align*}
\]

<table>
<thead>
<tr>
<th>فریзерتان</th>
<th>عمان</th>
<th>لبنان</th>
<th>عمان(1)</th>
<th>لبنان(1)</th>
<th>پاکستان</th>
<th>عمان(1)</th>
<th>پاکستان(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
</tr>
<tr>
<td>40.52v_1 + 1272v_2 + 0.59v_3 - 38.14u_1 + 0.02u_2 + 1 ≥ 0</td>
<td>0.57v_1 + 1638v_2 + 0.21v_3 - 59.61u_1 + 0.46u_2 + 1 ≥ 0</td>
<td>7v_1 + 1203v_2 + 0.22v_3 - 13.81u_1 + 0.12u_2 + 1 ≥ 0</td>
<td>13.97v_1 + 2704v_2 + 0.18v_3 - 32.33u_1 + 0.72u_2 + 1 ≥ 0</td>
<td>22.29v_1 + 50v_2 + 0.34v_3 - 50.78u_1 + 0.22u_2 + 1 ≥ 0</td>
<td>16.99v_1 + 397v_2 + 0.2v_3 - 2.92u_1 + 0.01u_2 + 1 ≥ 0</td>
<td>23.5v_1 + 4v_2 + 0.3v_3 - 58.27u_1 + 0.85u_2 + 1 ≥ 0</td>
<td>20.98v_1 + 3.43v_2 + 0.17v_3 - 44.224u_1 + 0.08u_2 + 1 ≥ 0</td>
</tr>
<tr>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
<td>ایران</td>
</tr>
<tr>
<td>28.86v_1 + 42v_2 + 0.11v_3 - 24.93u_1 + 0.08u_2 + 1 ≥ 0</td>
<td>20v_1 + 23.24v_2 + 0.12v_3 - 4.07u_1 + 0.05u_2 + 1 ≥ 0</td>
<td>20.84v_1 + 577.14v_2 + 0.76v_3 - 108u_1 + 0.31u_2 + 1 ≥ 0</td>
<td>20.93v_1 + 30v_2 + 0.2v_3 - 55.86u_1 + 1.07u_2 + 1 ≥ 0</td>
<td>20v_1 + 783v_2 + 0.28v_3 - 6.34u_1 + 0.12u_2 + 1 ≥ 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{align*}
u_r &\ge 0, \quad r = 1, 2, \ldots, s \\
v_i &\ge 0, \quad i = 1, 2, \ldots, m \\
w &\text{free in sign}
\end{align*}\]
لازم به اشاره است که ضرایب v و u در مدل بالا، مقادیر واقعی مربوط به ورودی و خروجی گشوده را دارند. این مدل طراحی شده توسط نرم‌افزار اشترمیسمه، کارایی بخش تحقیق و توسعه ایران در این مرحله و وزنهای مطلوب برای رسیدن به این کارایی بهدست می‌آید که خروجی نرم‌افزار در جدول 3 آمده است.

جدول 3: خروجی نرم‌افزار برای ارزیابی عملکرد تحقیق و توسعه ایران در بخش تولید علم

<table>
<thead>
<tr>
<th>Decision Variable</th>
<th>Solution Value</th>
<th>Unit Cost or Profit c(j)</th>
<th>Total Contribution</th>
<th>Reduced Cost</th>
<th>Basis Status</th>
<th>Allowable Min. c(j)</th>
<th>Allowable Max. c(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V1</td>
<td>0</td>
<td>40.52</td>
<td>0</td>
<td>24.0907</td>
<td>at bound</td>
<td>16.4293</td>
<td>M</td>
</tr>
<tr>
<td>2 V2</td>
<td>0</td>
<td>1,272</td>
<td>0</td>
<td>366.9578</td>
<td>at bound</td>
<td>905.0422</td>
<td>M</td>
</tr>
<tr>
<td>3 V3</td>
<td>2.3068</td>
<td>0.59</td>
<td>1.361</td>
<td>0</td>
<td>basic</td>
<td>0.3998</td>
<td>0.76</td>
</tr>
<tr>
<td>4 U1</td>
<td>0.0262</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>basic</td>
<td>(-M)</td>
<td>586.54</td>
</tr>
<tr>
<td>5 U2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3076</td>
<td>at bound</td>
<td>-0.3076</td>
<td>M</td>
</tr>
<tr>
<td>6 W</td>
<td>1.0785</td>
<td>1</td>
<td>1.0785</td>
<td>0</td>
<td>basic</td>
<td>1</td>
<td>1.1796</td>
</tr>
</tbody>
</table>

Objective Function

$\text{(Min.)} = 2.439$

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Left Hand Side</th>
<th>Direction</th>
<th>Right Hand Side</th>
<th>Shadow Price</th>
<th>Solution</th>
<th>Allowable Min. RHS</th>
<th>Allowable Max. RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C1</td>
<td>1</td>
<td>=</td>
<td>1</td>
<td>2.4395</td>
<td>0</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>2 C2</td>
<td>1.4395</td>
<td>>=</td>
<td>0</td>
<td>1.4395</td>
<td>0</td>
<td>(-M)</td>
<td>1.4395</td>
</tr>
<tr>
<td>3 C3</td>
<td>0</td>
<td>>=</td>
<td>0</td>
<td>0.309</td>
<td>-0.0739</td>
<td>1.2687</td>
<td></td>
</tr>
<tr>
<td>4 C4</td>
<td>1.2239</td>
<td>>=</td>
<td>0</td>
<td>1.2239</td>
<td>0</td>
<td>(-M)</td>
<td>1.2239</td>
</tr>
<tr>
<td>5 C5</td>
<td>0.6461</td>
<td>>=</td>
<td>0</td>
<td>0.6461</td>
<td>0</td>
<td>(-M)</td>
<td>0.6461</td>
</tr>
<tr>
<td>6 C6</td>
<td>0.5314</td>
<td>>=</td>
<td>0</td>
<td>0.5314</td>
<td>0</td>
<td>(-M)</td>
<td>0.5314</td>
</tr>
<tr>
<td>7 C7</td>
<td>1.4633</td>
<td>>=</td>
<td>0</td>
<td>1.4633</td>
<td>0</td>
<td>(-M)</td>
<td>1.4633</td>
</tr>
<tr>
<td>8 C8</td>
<td>0.2427</td>
<td>>=</td>
<td>0</td>
<td>0.2427</td>
<td>0</td>
<td>(-M)</td>
<td>0.2427</td>
</tr>
<tr>
<td>9 C9</td>
<td>0.3112</td>
<td>>=</td>
<td>0</td>
<td>0.3112</td>
<td>0</td>
<td>(-M)</td>
<td>0.3112</td>
</tr>
<tr>
<td>10 C10</td>
<td>2.0104</td>
<td>>=</td>
<td>0</td>
<td>2.0104</td>
<td>0</td>
<td>(-M)</td>
<td>2.0104</td>
</tr>
<tr>
<td>11 C11</td>
<td>0.6786</td>
<td>>=</td>
<td>0</td>
<td>0.6786</td>
<td>0</td>
<td>(-M)</td>
<td>0.6786</td>
</tr>
<tr>
<td>12 C12</td>
<td>1.2486</td>
<td>>=</td>
<td>0</td>
<td>1.2486</td>
<td>0</td>
<td>(-M)</td>
<td>1.2486</td>
</tr>
<tr>
<td>13 C13</td>
<td>0</td>
<td>>=</td>
<td>0</td>
<td>0.69</td>
<td>-1.2687</td>
<td>2.8246</td>
<td></td>
</tr>
<tr>
<td>14 C14</td>
<td>0.0753</td>
<td>>=</td>
<td>0</td>
<td>0.0753</td>
<td>0</td>
<td>(-M)</td>
<td>0.0753</td>
</tr>
<tr>
<td>15 C15</td>
<td>1.5582</td>
<td>>=</td>
<td>0</td>
<td>1.5582</td>
<td>0</td>
<td>(-M)</td>
<td>1.5582</td>
</tr>
</tbody>
</table>
با استفاده از خروجی این نرم‌افزار می‌توان کارایی کشور ایران را در مرحله تولید علم، تعیین و احتمال در نظر گرفتن آن مشخص کرد. با توجه به خروجی این مرحله مقدار تابع هدف برای کشور ایران 2439 به ترتیب آندازه است (قامت هاشورخوردی) و با توجه به اینکه مدل‌های با مقاله از نوع خروجی محور هستند، مقدار کارایی از معکوس مقدار تابع هدف به‌صورت می‌آید. بنابراین، مقدار کارایی ایران در مرحله تولید علم 41 درصد است و ایران در این بخش، یک کشور ناکارا تلقی می‌شود. در نتیجه، برای هر واحد ناکارآمد، دست کم یک واحد دیگر وارد می‌گردد که با همان وزن‌های هدف بسته به مرحله آندازه‌گیری کارایی پک است. به این ترتیب، کشور ایران، "گروه همتا" نامیده شده و "هصد ناکارآمد" گرفته می‌شود. سوم جدول‌های 1 و 2 گروه مرجع برای کشورهای ناکارآمد و همچنین، قیمت‌های سایه آن را نشان می‌دهد.

یکی از بهترین راه‌های بهبود کشورهای غیرکارا دیده گردی را در این خصوص ارائه می‌کند. با توجه به خروجی نرم‌افزار برای کشور ایران در بخش تولید علم، محدودیتهای سه‌محور (مربوط به کشور ایران)، و محدودیتهای 13 (مربوط به کشور ترکیه) دارای قیمت سایه غیرصرف می‌باشد که در بخش تولید علم 2.1 و 2.0 بسته به هشتارخوردی مشخص است. به عبارات دیگر واحد مجازی برای کشور ایران، از ترجیح 2030، کشور ایران و 269 کشور ترکیه، ساخته شده است. پس کشور ایران در مرحله تولید علم نسبت به دیگر کشورهای منطقه با ورودی‌های بیشتر، خروجی‌های کمتری ارائه می‌کند. بنابراین، علت عدم کارایی آن روش می‌گردد. با عبارات دیگر، وحدت می‌توان بافت (وحدت مجازی) که با ورودی‌های کمتری از کشور ایران، خروجی بیشتر از آن را ارائه می‌نماید. کشورهای که در این مرحله دارای کارایی کامل یعنی پیدایش داده‌ها برای هر دو مرحله تولید و انتشار علم طراحی و اجرای گردیده، در انجام از است به تحلیل کارایی عملکرد تحقیق و تسویه کشورهای منطقه در دو بخش تولید و بخش انتشار علم بردایخته شود. همان‌طور که از سوئد در جدول‌های 1 و 2 پیداست، نمرات کارایی کشورها در بخش عصر و یک قرار دارند. کشورهای دارای کارایی 1، کشورهای کارا و کشورهای داری کارایی بالایی از 1 تا کارایی تلقی می‌شوند.

در مرحله اول، یعنی تولید علم از 14 کشور تحت بررسی تعداد 10 کشور توانسته‌اند پیش‌ترین کارایی یعنی 1 مدل‌های تحلیل پوششی داده‌ها به دست آورند. در هر مرحله (تولید علم)،

1. peer group 2. reference group 3. shadow price
کشورهای ارمنستان، آذربایجان، گرجستان، لبنان، عمان، پاکستان، عربستان، سوریه، ترکیه، و امورات با هدف آدیان کارایی کامل یعنی یک، دقیقاً کشورهای کارایی منطقه و کشورهای ایران، اردن، قطرستان و قوافستان به‌آیندی کارایی به‌ترین‌ها ۱۹/۴۳، ۹/۵۱ و ۹/۴۱ به‌عنوان کشورهای ناکارایی منطقه در بخش‌های تولید علم شناخته شدند. کارایی ۵۱ برای ایران نشان می‌دهد که بخش تحقیق و توسعه کشور در بخش تولید علم می‌تواند تنها با استفاده از ۳۱٪ منع موجود (نرخ لیست‌تام در روش‌های علمی و مهندسی، تعداد پژوهشگران تحقیق و توسعه، و هزینه تحقیق و توسعه) همین سطح از خدمات را به عنوان ساداتهای کشور تعداد مقالات علمی و مهندسی و پژوهش ثبت اختراع دریافتی به‌مللی ارائه دهند.

در مرحله انتشار علم از ۱۴ کشور تحت بررسی، تعداد پنج کشور یعنی کشورهای ایران، قطرستان، پاکستان، سوریه، و قوافستان توانسته‌اند توسط مرحله تحلیل پوششی داده‌ها بیشترین کارایی، یعنی ۱ را به‌دست آورند. در این میان، کشورهای ارمنستان، آذربایجان، گرجستان، ایران، لبنان، عمان، عربستان، ترکیه، و امورات به‌ترتیب با کارایی ۶/۱۸، ۵/۱۲، ۴/۷۴، ۳/۲۷، ۲/۷۴، ۱/۷۷، ۱/۱۱، ۰/۸۷، ۰/۸۶ و ۰/۸۴ در گروه کشورهای ناکارا در بخش انتشار علوم شناخته شده‌اند. در این میان، فقط کشورهای پاکستان و سوریه هستند که از هر دو مرحله تولید و انتشار علم در منطقه، نمره کارایی کامل را به‌دست آورده‌اند. از نهادهای مورد توجه این امر همکاری تحقیق و توسعه ایران در منطقه در بخش تولید علم ناکارا و در بخش انتشار علم کاراست.

۶. نتایج گیری و پیشنهادات

در صحنه‌های سازی و رقابت‌های استان‌های تحقیق و توسعه ملی در تغییرات شدیدی جهت فعالیت مؤثر و کارکردگانه‌اند. زمیناه که با خشکی از سرمایه‌های ملی بر روی مراکز تحقیق و توسعه سرمایه‌گذاری می‌شود، این مراکز مستند به‌طور مبتنی بر مبتنی بر عملکرد بحث جامعه است. این مستند سیستم‌بندی از آزمایش و میزان علی اقتصادی در عملکرد کشورهای داری از اهمیت و بزرگی یک خودکار است. شیوه‌های رایج ارزیابی عملکرد در کل، سطح خروجی‌های منجی از عملکردهای سیستم ساخته‌ای را می‌توان در نظر گرفت. در حالی که با یک رویکرد سیستمی بوده باشد می‌توان دریافت که دستیابی به خروجی‌ها فقط در بستر بهره‌برداری
از ورودی‌ها و یا استفاده از فرآیندهای مناسب امکان پذیر است. بنابراین، توجه صرف به خروجی‌ها در ارزیابی و مدل‌برداری عملکرد ما را به اثبات خواهد کشانید.

در این پژوهش، از فن تحلیل پوششی داده‌ها به عنوان یک ابزار مؤثر برای ارزیابی
واحدهای تصمیم‌گیری که درای جوئید ورودی و خروجی مناسب هستند، استفاده شده و عملکرد تحقیق و توسعه بخش علم و مهندسی کشور در منطقه در دوره مورد ارزیابی قرار گرفته است. نتایج حاصل از ارزیابی کشورها در مرحله یک (توسعه علم) حاکی از
آن بود که از 14 کشور تحت بررسی در این مرحله، تعداد چهار کشور از جمله ایران
عملکردشان ناکارآمد است. بررسی کشورها توانمندی بیشترین استفاده را از منابع خود
(ورودی‌های مرحله تولید علم) در راستای استراتژی مبتنی بر استفاده از
انحراف‌های مرحله تولید علم کنن. نتایج حاصل از مرحله انتشار علم بیشتری از آن است که از 14 کشور تحت بررسی
در این بخش، فقط تعداد چند کشور توانمندی از این مرحله بیشترین کارایی را به دست آورده.

از نکات مورد توجه این است که ایران، در حالی که در بخش انتشار علم عملکردش
کاراست، همچنان در بخش تولید علم در منطقه نسبت به دیگر کشورها ضعیف است. این
چنین نشان‌دهنده برای جمهوری اسلامی ایران، رتبه مسیبی نسبت و با اهداف ترسیم‌شده در سند
جمهوری اسلامی ایران که دستیابی به جایگاه اول اقتصادی، علمی، و فناوری در منطقه آسیای
جنوب غربی با تأکید بر جنبش نرم‌افزاری و تولید علم است و نیاز اهداف علمی و نواوری
کشور به دستیابی به رتبه اول براساس شاخص نوآوری است، قابلیت زیادی دارد.

این بیان‌ها تا حدودی با نتایج یافته‌های بخشی و همکاران (۱۳۹۰) در خصوص وضعیت
توانمندی نوآوری ایران براساس شاخص تکنیکی تایید می‌شود. نقشه شبیه پژوهش حاضر
نسبت به این پژوهش مشابه داخلی که در حوزه ارزیابی عملکرد بخش تحقیق و توسعه کشور
صورت یافته است، ارزیابی عملکرد تحقیق و توسعه کشور در دوره مورد انتشار علم
است که از لحاظ روش با پژوهشی خارجی صورت گرفته همچنین بررسی‌های لو و هانگ
مطباق می‌کند. با توجه به اینکه اطلاعات (Liu and Lu 2009) و لو و لو (Lu and Hung 2010)
این بررسی به جنگ سال است برای گرد و همچنین، با دیگر نظر گرفت اینکه به دلیل محدودیت
اطلاعات، همه موارد توان آوری دارای تابعی به نشانه است، پیشنهاد می‌شود در پژوهش‌های
آینده در نظر گرفتند ورودی و خروجی‌های بیشتری به روز وقعت برای دوره مورد تولید و انتشار
علم، عملکرد بخش تحقیق و توسعه ایران در مقایسه با دیگر کشورها ارزیابی شود. علاوه بر
این، پیشنهاد می‌گردد که از ابزار کارآفرینی در این پژوهش برای ارزیابی عملکرد تحقیق و
توسعه سازمان‌های داخلی کشور نیز استفاده گردد.
Failure Finding the Iran's Research and Development Performance in both Sectors: the Production and Publishing of Knowledge Using Network DEA

Mohammad Hossein Tahari Mehrjardi*
MA in Industrial Management

Hamid Babaei Meybodi1
MA in Industrial Management

Somaye javidi2
MA in Industrial Management

Abstract: In the era of globalization and intense competition, the research and development national organizations have been in the strong dilemma for the efficient activities. When part of the national capital would be invested on research and development centers, these centers are responsible of the answer for their performance. The purpose of this study was to evaluate the relative efficiency the Iran's research and development performance in the region in both sectors: the production and publishing of knowledge using Network DEA. So the research and development activities from 14 countries region were extracted to assess their relative efficiency. In the production sector, the inputs such as enrollment rates in the sciences and engineering fields, number researchers, costs research and development and the outputs such as number patents, number papers engineering and scientific were used. In sector publishing of knowledge, the inputs such as number patents, number papers engineering and scientific and outputs such as export technology modern and mean reference to the articles were used. The results showed that in the sector of the production of knowledge, four countries and in the sector of the publishing of knowledge, nine countries were inefficient. It was noteworthy that Iran in the sector of the production of knowledge did not have the proper place between the selected countries, but in the sector of the publishing of knowledge it was able to gain maximum efficiency from the DEA models..

Keywords: relative performance, research and development, DEA, network DEA

*Corresponding author: hooseintahari@yahoo.com
1. babaemaybodihamid@yahoo.com 2. somayejavidi@yahoo.com