چکیده: در عصر جهانی سازی و رقابت شدید، سازمان‌های تحقیق و توسعه ملی در تبدیل شدنی جهت عالی‌ترین میل و کارا قرار گرفته‌اند. زمانی که بخشی از سرمایه‌های ملی بر روی مزکور تحقیق و توسعه سرمایه‌گذاری می‌شود، این مکان سطح پس‌تحصیلی در حال عملاً مزکور خود به جمعه هستند. هدف این پژوهش ارزیابی کارایی نسبی عملکرد تحقیق و توسعه علمی و مهندسی ایران در دو بخش توسعه و اشاره علم با استفاده از سازوکار "جدول پوششی داده‌ها" است. این بین، فعالیت‌های تحقیق و توسعه 9 کشور منطقه استخراج شد. در این راستا، برای ارزیابی کارایی نسبی آنها در بخش تولید علم، از ورودی‌های همچون تحقیق و توسعه، هزینه تحقیق و توسعه و خروجی‌های همچون تعداد مقایلات علمی و مهندسی و پروانه‌های تخصصی دریافتی در تولید علم، در بخش انتشار علم، از ورودی‌های تعداد مقایلات علمی و مهندسی و پروانه‌های تخصصی دریافتی و خروجی‌های همچون صادرات قلمدادی و میانگین ارجاع به مقایلات استفاده شد. نتایج نشان داد که در بخش تولید علم از 14 کشور تحت پرسی تعداد چهار شکور و در بخش انتشار علم، تعداد ان کشور در مین کشورهای مناسب تکاوری هستند. از نتایج قابل تأمل این که ایران در بخش تولید علم از جایگاه بالایی در بین کشورهای مناسب برخوردار نیست و در بخش انتشار علم توانسته است بیشترین کارایی را از مدل تحلیل پوششی داده‌ها به دست آورد.

کلیدواژه‌ها: کارایی نسبی، تحقیق و توسعه، تحلیل پوششی داده‌ها، تحلیل پوششی داده‌های شبکه‌ای
1. مقدمه

ارزیابی عملکرد فرآیند است که این فرآیند را به سازمان‌ها می‌دهد، مسائل سازمانی خود را مبنایی کنند. در فرآیند مناسب، اقدام مناسب‌های در این زمینه نمایش داده می‌شود. در دهه‌های اخیر دیتای مدل‌بندی و آکادمیک توجه روان‌شناختی به مسائل انداده‌گیری عملکرد سازمان و مشابه است. زیرا نشان‌دهنده هزاران، نشان‌دهنده از تصمیم‌گیری به‌طوری‌که در یادگیری سازمانی به‌طور ماهی‌انگیزه می‌شود (Chiesa et al. 2007; Chiesa et al. 2009). به‌طور کلی، نمی‌تواند آن را درک کنیم و اگر نتایج چیزی را در کنار کسی نمی‌تواند آن را کنترل کنیم. نمی‌تواند آن را به‌طور دیده (2010).

یکی از بخش‌هایی که ارزیابی عملکرد باید آن لازم و ضروری به نظر می‌رسد، بخش تحقیق و توسعه هر کشور است. این بخش باید یکی از سرمایه‌های انسانی و با توجه به موجودی دانش، دانشجویی را تولید می‌نماید و طرح‌های جدیدی را به‌طور سازمان‌گذاری ارائه می‌دهد. (8). در کمیسیون صنایع سال 1994، تحقیق و توسعه را یک منبع اصلی توآوری و یک محور مهم در شرکت اقتصادی هر کشور دانستند (Hirons, Simon, and Simon 1998). در انتظار سازمان‌دهی و تحقق اهداف، هنگامی که دانش‌ها و مهارت‌ها توسعه می‌یابند، و ارتباط یافته‌ها در رقابت‌های جهانی در گرو تولید و به‌کارگیری دانش است (به‌همراه و همکاران 1988). فعالیت‌های تحقیق و توسعه علاوه بر فناوری، علی‌رغم غریبانی مثل ایجاد رابطه‌های غیرفسی، عضویت در شبکه‌های بین‌ملی و سازوکار انتقال دانش و مواردی از این قبیل ایده می‌کند. در سال‌های 1989 و 1990 کوون لوینتال به این نتیجه رسید که تحقیق و توسعه باعث افزایش طراحی جدید شده‌است می‌شود و توانایی شناختی و جذاب استخراج اطلاعات جدید از محتویات داخلی با خارجی خواهد شد. این منجر به تقویت نبود کاری و به‌همراه قابلیت‌های سازمانی و همچنین، افزایش بهره‌وری و کارایی و مزایای قابلیت در بازار می‌شود (Kulatunga, Amaratunga, and Haigh 2007). از آنجا که سازمان‌های گذاشتن در تحقیق و توسعه یکی از مهم‌ترین نعیصر پیشرفت علمی و قابلیت‌های است، هر چکاری که از منابع به‌صورت ناکارا استفاده کنند، جریمه‌ای پیشرفت گران‌تر است، به گونه‌ای که سازمان‌های کاذبی بیشتر در چنین شرایطی، کمک کمتری در ایجاد پیشرفت خواهند کرد (Wang 2007; Wang and Hung 2007).

ارزان همکاران سایر کشورها، خود را نیازمند پیشرفت در حوزه فتاوری و نوآوری می‌دانند. و
شکل گیری نهادهای مرتب در این زمینه، جهت گیری محتمل‌گرایی استنادی متعدد اقتصادهای
برنامه چهارم، سند پنج‌سالنامه، نشست جمعیت علمی کشور و نیز تأکید مدیران ارشد نظام بر نوآوری
از جمله تأکیدهای شکلی بر اهمیت موضوع است. با توجه به اهمیت عملکرد تحقیق و توسیع و
ضرورت مدیریت آن در سطح ملی و همچنین، تامین فعالیت را به بهبود کشورها بهره‌وری
همراه و منطقه در این زمینه، در اختصار داشت اطلاعات پایه‌ای که توانست تصویری از وضعیت
عملکرد تحقیق و توسیع را در میان کشورها نشان دهد، ضروری است. در واقع، شناخت
وضعیت و چالش‌های عملکرد تحقیق و توسعه کشور در سطح ملی شامل موضوعات کلی به
مسیب توسیع فتاوری و دستیابی به اهداف ایران ۱۴۰۴ (بیخی و همکاران ۱۳۹۹) است
لزوم به اشکال‌هایی که تاکنون جانچوب و معیارهای مشخصی برای ارزیابی کارایی
عملکرد تحقیق و توسیع کشوری که در سطح داخلی و بیرون سطح ملی عرضه نشده است. در حال حاضر، در بخش اقتصادی پژوهشی، توجه زیادی به تأثیر مقالات پژوهشی، لید
اعتراوان و اقتصادی از این نمونه می‌شود، در حالی که فاز بی‌پایداری فنا خلاصه تحقیق و توسیع که
مربوط به کارگیری و انتشار کارهای پژوهشی در بخش داخلی و بین‌مللی است، توجه کافی
ننده است. مراکز کارآفرینی و مراکز رشد دانشگاه‌ها نیز بهتر توجه شان به پژوهش‌های
پژوهشگران است و بر روی کاربردهای کردی پژوهش‌های آنها توجه کافی نداشت. اگر بدن
توجه کافی بر بعد انتشار و به کارگیری ایده‌های جدید، فقط به بعد توسیع آن توجه شود، در
این صورت نمی‌تواند منجر به بهبود علم و فتاوری جامعه شود. بنابراین، به کارگیری روشنی که
نهاده و مستند‌های مراحل مختلف فنا خلاصه تحقیق و توسیع را می‌توانند نشان دهد و در نهایت،
کارایی نسبي عملکرد تحقیق و توسیع سازمان‌ها و کشورها را بسنجد، راه‌کار مناسبی برای حل
این مسئله است.
در تبیه‌های که این مقاله، کاربردی "تحلیل پوششی داده‌های شبکه‌ای" در عرضه‌پایی
و تحلیل کارایی نسبی عملکرد تحقیق و توسعه بخش علوم و مهندسی کشورهای منطقه و تعیین
جایگاه ایران در آن در زمینه تولید و انتشار علم است. مدل‌های تحلیل پوششی داده‌های
شبکه‌ای، کارایی کلی سازمان و کارایی هرکدام از زیرفک‌های یک سازمان را ارزیابی گردی
می‌کند. در مدل‌های تحلیل پوششی داده‌های شبکه‌ای، به مثال ساختار سلسله مراتبی فعالیت‌های
از ساختار شبکه‌ای کمک گرفته شده است (Hsieh and Lin 2010). در ادامه، پس از مرور مبانی

1. Network DEA
نوری در زمینه رویکرد تحلیل پویشی داده‌ها و پیشینه از تکنیک‌های مراکز و طرح‌های تحقیق و توسعه، به تشریح روش پژوهش مورد استفاده در این مقاله می‌پردازیم. مقاله به تجزیه و تحلیل نتایج پرداتنی می‌شود و در نهایت، با جمع‌نده و ارائه نتایج حاصل از این پژوهش، مقاله به پایان می‌رسد.

1. تحلیل پویشی داده‌ها

تحلیل پویشی داده‌ها به عنوان یکی از فنون برنامه‌ریزی غیرپارامتریک محسوب می‌شود که به‌طور گسترده‌ای، به مدولاریزی کارآیی نسبی و از فرایند واحدهای شاخصی و داشته باشند، کارآیی نسبی‌ها یکی از واحدهای تحسین‌گری با حلق مدل برنامه‌ریزی کسری زیر به‌دست می‌آید.

\[
\text{Max } z = \frac{\sum_{i=1}^{n} u_i y_{io}}{\sum_{i=1}^{m} v_i x_{ij}}
\]

\[
\sum_{j=1}^{n} x_{ij} = 1, \quad j = 1, 2, \ldots, n
\]

\[
u_i \geq 0, \quad i = 1, 2, \ldots, s
\]

\[
v_i \geq 0, \quad i = 1, 2, \ldots, m
\]

در مدل بالا، \(x_{ij}\) مقدار خروجی \(i\)ام برای واحدهای تحسین‌گری \(j\)ام، \(u_i\) و \(v_i\) مقدار ورودی \(i\)ام برای واحدهای تحسین‌گری \(i\)ام وون امتیاز کارآیی \(i\)ام و \(m\) و \(n\) جمعیت در این مدل. امتیاز کارآپی هر واحد تحت بررسی از تحسین‌گری خروجی و مجموع مزور در ورودی‌ها به‌دست می‌آید که این امتیاز کثری با سبای با عددهای پیوست. در صورتی که این امتیاز برابر با یک شود، آن واحد کارا در صورتی که کثرتر از یک باشد، آن واحد ناکارا تلقی می‌شود.

هر چند روز به روز بر تعداد مدل‌های تحلیل پویشی داده‌ها افزوده می‌شود و هر چند جبه تخصصی یک مدل، نیاز به‌همین نظریه تعدادی مدل اصلی است که می‌تواند گزاران این روش را متغیر، چرخ، گرمایی و روش‌های کلیدگیران را به کارآپی کثری و جردگیران به روش می‌باشد. تحسین‌گری مشاهده است که دارای درجه‌ی ورودی (نها) و جنده‌ی خروجی (سانتاه) مشابه است.

\[\text{Charnes, Cooper, and Rhodes 1978.}\]

1. Data Envelopment Analysis (DEA)
فرض باید به‌معنای (CRS) در تحلیل استفاده شده است. همچنین مدل دیگر، مدل ارائه شده توسط بنکر، بارنری و کوپر (1978) [1] با عنوان BCC است که با فرض باید متعلق به مقياس (VRS) طراحی شده است. این مدل‌ها به‌صورت زیر تعریف می‌شود (Bal et al. 2010):

\[
\begin{align*}
\text{Max} & \quad \sum_{r=1}^{s} u_r y_{r0} \\
\text{st:} & \quad \sum_{i=1}^{m} v_i x_{i0} = 1 \\
& \quad \sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \leq 0, \\
& \quad u_r \geq 0, \quad r = 1, 2, \ldots, s \\
& \quad v_i \geq 0, \quad i = 1, 2, \ldots, m \\
\end{align*}
\]

CCR

\[
\begin{align*}
\text{Max} & \quad \sum_{r=1}^{s} u_r y_{r0} + w \\
\text{st:} & \quad \sum_{i=1}^{m} v_i x_{i0} = 1 \\
& \quad \sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} + w \leq 0, \\
& \quad u_r \geq 0, \quad r = 1, 2, \ldots, s \\
& \quad v_i \geq 0, \quad i = 1, 2, \ldots, m \\
& \quad w \text{ free in sign}
\end{align*}
\]

BCC

مدل باید به‌صورت پویا تحلیل پوششی داده‌ها براساس ماهیت مورد استفاده با دو دسته مدل‌های

1. Banker, Charnes, and Cooper 2. Promethee

3. ساخت پویا

تا به حال نظامهای ارزیابی عملکرد متغیری جهت ارزیابی عملکرد نظام تحقیق و توسعه

سازمان‌ها و کشورها به کار گرفته شده است که از جمله این نظامهای می‌توان به روش تحلیل

پویا و به‌صورت کمی با در نظر گرفتن معادلات فاربن آیند ارزیابی را انجام

می‌دهند. در ادامه به‌طور خلاصه از پویا و به‌صورت کمی با در نظر گرفتن معادلات فاربن آیند ارزیابی را انجام

1390 (40) در پویا و به‌صورت کمی با در نظر گرفتن معادلات فاربن آیند ارزیابی را انجام
نیسان داد براساس شاخص ترکیبی نوآوری، لبنان و گرجستان و امارات متحده عربی در گروه کشورهای با وضعیت نواوری خوب و عمان و پاکستان و سوئیس در گروه کشورهای با وضعیت نواوری ضعیف قرار گرفتند. براساس نتایج این مطالعه، ایران در میان کشورهای مورد مطالعه در طول سطح و میانه قرار داشت.

در ژوئن و نوامبر و سپت هرگاه، با به کارگیری فن تحلیل پویشی داده‌ها بررسی کاراپی
نسبی اقدامات تحقیق و توزیع در ۳۰ کشور پرداخته شد. در این بررسی، هزینه‌های تحقیق و توزیع و کیفیت را در گروه در سال‌های پس از اینکه در فرآیند به عنوان ورودی و پردازه ثابت است. در اینکه تحقیق نشان‌گذاری نظر مقالات به عنوان خروجی مدل در نظر گرفته شد. براساس نتایج به‌دست‌آمده، حدود یک سوم از کشورهای دارای کارایی مناسب هستند و دو سوم نیز در مرحله افزایش بازده

(Wang and Hung 2007)

نسبت به مقياس هسته‌ن (Anderson, Daim, and Lavoie 2007).

در پژوهش اندروسون، دیم، و لاوی برای انتقاده‌گری کاراپی انتقال فناوری، ۵۴ دانشگاه
با استفاده از تحلیل پویشی داده‌ها از ورودی‌های هم‌زحمت کل هزینه‌های سرمایه برای پژوهش‌ها و خروجی‌های هم‌زحمت درآمد حاصل از مجوز‌ها، توان خاصانه‌های تجاری، شرکت‌های را نشان داده‌های اختراعات، اختراعات بی‌طرفی، و اختراعات منترشده استفاده شده است.

(Wang and Hung 2007)

در پژوهش هاشیمتوتو و هاردها روند کاراپی تحقیق و توزیع صنعت داروسازی در طی دهه
1983-1992 با استفاده از روش‌های تحلیل ورودی داده‌ها و ورودی‌های هم‌زحمت هزینه تحقیق و توزیع و خروجی‌های هم‌زحمت تعداد حق اختراعات که در سال منشور مشاهده شده، فرآیند است. سالانه و سود ناخالص سالانه استفاده شده است. با توجه به نتایج این پژوهش، کاراپی تحقیق و توزیع این صنعت در سال ۱۹۹۲ به ۵۰ درصد مقدار خود در شرکت دهه ۱۹۸۳ رشدی است و تعداد کمی از شرکت‌های خلاق واقع مانده‌اند.

(Hashimoto and Haneeda 2008)

در پژوهش ایلات، گولنی، و شتوب کاراپی نسبی طرح‌های تحقیق و توزیع در طی
مراحل قرار گرفتند. در این پژوهش، از رویکردهای تحلیل
پویشی داده‌ها و کارت امتیازی متوازن استفاده شده است. این مدل تحقیل پویشی
داده‌ها از پنج جنبه کارت امتیازی متوازن شامل جنبه‌های مالی، مشتری، فرآیندهای داخلی
کسب و کار، رشد و ناگیری، و جنبه عدم اطمینان و ورودی آن سلسله‌گذاری شده
تشکیل می‌شود (Eilat, Golany, and Shhtub 2008).

جویت، باتوئ، و دشموک در مفهوم تحقیق و توزیع برای نخستین بار دو فن تحلیل

846
سلسله مراقب در تحلیل پوششی داده‌ها را به‌جهت ارزیابی کارایی سازمان‌های تحقیق و توسعه هند استفاده کردند. در این پژوهش، به مزیت قابلیت اجرای، قابلیت کنترل، و کارایی مدل، در نهایت از میان مجموعه ورودی‌ها و خروجی‌های پیان‌شده، شش مقیاس خروجی و یک مقیاس ورودی با نظر گروهی انتخاب گردید. شش میزان خروجی مقالات منشده، حک انتی‌زنا، جریان نقدی ایجاد شده، توسعه محصول، فناوری با فناوری، مدارک و دکتران اطلاع‌ده، و چاپ‌سازی کسب‌شده توسط سازمان هستند و میزان ورودی انتخاب شده را نیز بودجه سالانه تخصیص یافته‌اند.

به‌نام سازمان تئفکل می‌دهد (2008) در پژوهشی که توسط لی پارک و چوئی در کشور کره انجام شد، عملکرد نسبی برناهای تحقیق و توسعه‌ای که مورد حمایت دولت قرار دارد از نظر هدف ناهماهنگی‌اند، با استفاده از روش‌کریک تحلیل پوششی داده‌ها مورد انتقاد گرفت. ورودی‌های مدل عبارت بود از میزان سرمایه‌گذاری و تعداد پژوهشگران مدرک دکتری و خروجی‌های مدل به سه دسته مقالات، اختراعات، و منابع انسانی تقسیم می‌شده‌د. در این پژوهش، ۵۸۶ طرح تحقیق و توسعه که از سال ۲۰۰۵ اتمام یافته‌اند، مورد ارزیابی قرار گرفته‌اند و در نهایت، شش برناه‌ای تحقیق و توسعه مورد حمایت دولت رتبه‌بندی شدند (Lee, Park, and Choi 2009).

در پژوهشی که توسط لی و لو صورت گرفت، کارایی مؤسسات تحقیق و توسعه نویسندگان با استفاده از تحلیل پوششی داده‌ها با روشکریک، مناسبی بر شکست دو مرحله‌ای، انتقادگری شد. در این پژوهش، از مدل باید متغیر به مقیاس با روشکرک خروجی محور استفاده شده است. نتایج حاصل از اجرای چندگانه در مدل تحلیل پوششی داده‌ها به‌نین صورت بود که ۱۷ مؤسسه در مرحله توسعه فناوری و ۱۸ مؤسسه در مرحله انتشار فناوری کارا بودند (Liu and Hung 2009).

در پژوهشی که توسط لو و هائلگ صورت گرفت‌است، فرآیند برناهای توسه‌نگر فناوری را به‌صورت دو مرحله تحقیق و توسعه و انتشار فناوری در نظر گرفتند و سپس عملکرد برناهای توسه‌نگر فناوری را با استفاده از تحلیل پوششی داده‌های متوازن محاسبه نمودند. در مرحله ۱، توانایی برناهای توسه‌نگر فناوری در ایجاد انتشارات، پرداخته‌های بروز‌پذیر و نیاز به انتشار فناوری در مرحله ۲، سبب توانایی برناهای توسه‌نگر فناوری در انتشار فناوری که انتقادگری شد. نتایج این پژوهش حاکی از این است که عملکرد تحقیق و توسعه به‌طور کلی از انتشار فناوری است.

(Lu and Hung 2010)

یا توجه به مطالعه مقالات مرتبط با تحقیق و توسعه، فرآیند تحقیق و توسعه دست کم از دو زیرفرازین اصلی توسه‌نگر فناوری و انتشار فناوری تئفکل شده است. بنابراین، ارزیابی عملکرد
تفاوت‌های تحقیق و توسعه در هر دو بخش باعث خواهد شد که به شناسایی ضعف‌های واحدها در میان یک از بخش‌ها و اقدامات لازم جهت بهبود عملکرد آن‌ها پرداخت شود. از سویی دیگر، با توجه به مطالعات گذشته در این بخش، روش‌های تحلیل پویشی داده‌ها نیز به عنوان یک ابزار قدرمند در ارزیابی کارایی واحدهای تحقیق و توسعه شناسایی شده است. همچنین، با توجه به حضور زیبایی‌هایی در حوزه تحقیق و توسعه، به کارگیری فن تحلیل پویشی داده‌های شبکه‌ای در مقایسه با تحلیل پویشی داده‌های پایه‌ای مناسب‌تر خواهد بود.

4. روش پژوهش

هدف از این پژوهش، کاربرد تحلیل پویشی داده‌های شبکه‌ای در عرضه‌پذیری عملکرد تحقیق و توسعه کشورها در منطقه است. کشورها مورد آزمون براساس دسترسی به اطلاعات برای معماری انتخابی تعیین گردید و در نهایت از میان آن‌ها، 16 کشور ایران، ارمنستان، آذربایجان، گرجستان، اردن، فلسطین، فرانسه، پاکستان، عربستان، عمان، اسرائیل، سوریه، ترکیه و امارات انتخاب گردیدند. است که این کشورها پراکنده و ترکیب مناسبی از کشورهای مختلف خاورمیانه، آسیای مرکزی، منطقه فلسطین، کشورهای عربی آسیای جنوب غربی و دیگر کشورهای مستقل هستند (بخش و همکاران 1390).

این مقاله بر روی مطالعات پیشین و بهره‌گیری از نظارت‌های ذی‌رخ تکنیک خاصی به کار برده است. مؤثر کارایی عملکرد تحقیق و توسعه کشورها مطرح شناسایی شد. برای این نشانامه‌ها با استفاده از این تکنیک عملکرد ورودی به نشانه‌های کافی مناسبی در مطالعات سابقه و کشورهای جهانی تعیین گردید و در مرحله بعد با توجه به اینکه در کنار معماری برای کشور ایران داده وجود دارد، معماری بالایی شد (بخش و همکاران 1390). در تحقیق به منظور ارزیابی کارایی وضعیت تحقیق و توسعه کشورهای منطقه در دو بخش تولید و انتشار علم، مفت محاسبه به عنوان روده و خروجی مدل‌های تحلیل پویشی داده‌ها انتخاب شد. شکل 1 روده‌ها و خروجی‌های عملکرد تحقیق و توسعه کشورهای انتخابی را در دو فاز تولید و انتشار علم نشان می‌دهد.

1. Network DEA
در مرحله بعد، با استفاده از فن تحلیل پوششی داده‌ها و با نظر گرفتن ترکیبات ورودی و خروجی‌ها، کارایی عملکرد تحقیق و توسه معنوی سنجش‌دهانه را در موقعیت جایگزینی می‌شود. در واقع، از یافته‌های عملکرد تحقیق و توسه دو مرحله سنجش‌دهانه می‌شود. در مرحله اول (مرحله تولید علم) ورودی‌های مدل تحلیل پوششی داده‌ها، نرخ بست‌نام در رشته‌های علمی و مهندسی (درصد)، تعداد پژوهشگران تحقیق و توسه در ارازیالی میلیون نفر جمعیت، و هزینه تحقیق و توسه (درصدی از تولید ناخالص داخلی) و خروجی‌های این مرحله تعداد مقالات علمی و مهندسی (در ارازیالی میلیون نفر جمعیت) و پرونده‌های انتشار علمی و تعداد مقالات علمی و مهندسی (در ارازیالی میلیون نفر جمعیت) و پرونده‌های انتشار دریافتی بین المللی (در ارازیالی میلیون نفر جمعیت) و خروجی‌های آن، صادرات فاواری یپشرفت (درصدی از صادرات سنتی) و مبلغ ارجاع به مقالات (به ارازیالی میلیون نفر جمعیت) را تشکیل می‌دهند. همچنین، ورودی‌های مرحله دوم (مرحله انتشار علمی)، تعداد مقالات علمی و مهندسی (در ارازیالی میلیون نفر جمعیت) و پرونده‌های انتشار دریافتی بین المللی (در ارازیالی میلیون نفر جمعیت) و خروجی‌های آن، صادرات فاواری یپشرفت (درصدی از صادرات سنتی) و مبلغ ارجاع به مقالات (به ارازیالی میلیون نفر جمعیت) را تشکیل می‌دهند. لازم به ذکر است که دوره زمانی این متغیرها مربوط به سال‌های ۲۰۰۵، ۲۰۰۶ و ۲۰۰۷ است و اطلاعات لاک در این زمینه از منبع (بخشی و همکاران ۱۳۹۰) اخذا گردیده‌اند. همچنین، برای تحلیل داده‌ها از نرم‌افزار WINQSB استفاده شد.

5. نتایج و یافته‌ها

در این پژوهش، مدل BCC خروجی محور از سایر مدل‌های تحلیل پوششی داده‌ها به کار گرفته شده است. دلیل انتخاب خروجی محور آن است که کشورها مقادیر ثابتی از منابع مانند بودجه، محقق و ... در اختیار دارند، اما خروجی حاکم از بخش تحقیق و توسه آنها خواسته می‌شود. از این رو، کشورها در تعیین میزان ورودی‌های خود نقش چندانی ندارند، و لیکن...
خروجی‌ها و هیچ‌گونه تغییرات مربوط به بخش‌های مختلف بستگی دارند. از این رو برای ارزیابی آنها مدل‌های خروجی محور مناسب‌تر است. اما، مدل BCC می‌تواند مدل بهینه‌تری انتخاب می‌شود که دلیل دال بر پاژه ثابت به مقدار در کارکرد فعالیت‌های تحقیق و توسعه کشورها وجود دارد. نتایج ایران لازم است تا مقادیر نیاز به مقياس آزاد گذاری شود تا در مدل تعیین نماز. نتایج ارزیابی در مرحله حاصل جدول‌های ۱ و ۲ خلاصه شده است.

جدول ۱. محاسبه میزان کارایی عملکرد تحقیق و توسعه کشورهای مختلف در مرحله تولید علم

<table>
<thead>
<tr>
<th>کشور</th>
<th>مرحله ۱ (تولید علم)</th>
<th>کارایی</th>
<th>واحد‌های مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران 49</td>
<td>ایران (0.64)</td>
<td>ترکیه (7/37)</td>
<td></td>
</tr>
<tr>
<td>ارمنستان</td>
<td>50</td>
<td>ترکیه (8/06)</td>
<td></td>
</tr>
<tr>
<td>آذربایجان</td>
<td>45</td>
<td>ترکیه (8/06)</td>
<td></td>
</tr>
<tr>
<td>گرجستان</td>
<td>50</td>
<td>ترکیه (8/06)</td>
<td></td>
</tr>
<tr>
<td>اردن</td>
<td>54</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>فرانسه</td>
<td>62</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>لبنان</td>
<td>50</td>
<td>ترکیه (8/06)</td>
<td></td>
</tr>
<tr>
<td>عمان</td>
<td>50</td>
<td>ترکیه (8/06)</td>
<td></td>
</tr>
<tr>
<td>پاکستان</td>
<td>62</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>عربستان</td>
<td>54</td>
<td>ایران (6/95)</td>
<td></td>
</tr>
<tr>
<td>سوریه</td>
<td>45</td>
<td>ایران (6/95)</td>
<td></td>
</tr>
<tr>
<td>ترکیه</td>
<td>54</td>
<td>ایران (6/95)</td>
<td></td>
</tr>
<tr>
<td>ایران</td>
<td>62</td>
<td>ایران (6/95)</td>
<td></td>
</tr>
<tr>
<td>پاکستان</td>
<td>54</td>
<td>ایران (6/95)</td>
<td></td>
</tr>
<tr>
<td>عربستان</td>
<td>50</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>سوریه</td>
<td>50</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>ترکیه</td>
<td>50</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>ایران</td>
<td>54</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. محاسبه میزان کارایی عملکرد تحقیق و توسعه کشورهای مختلف در مرحله انشار علم

<table>
<thead>
<tr>
<th>کشور</th>
<th>مرحله ۲ (انشار علم)</th>
<th>کارایی</th>
<th>واحد‌های مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایران</td>
<td>62</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>ارمنستان</td>
<td>54</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>آذربایجان</td>
<td>50</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>گرجستان</td>
<td>50</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
<tr>
<td>اردن</td>
<td>54</td>
<td>پاکستان (19/58)</td>
<td></td>
</tr>
</tbody>
</table>
در این قسمت، برای تشریح چگونگی محاسبه اعداد جدول های ۱ و ۲ به ارائه یک مثال از این موارد پرداخته می‌شود. فرض می‌شود که هدف محاسبه‌کاری بخش تحقیق و توسعه ایران در بخش تولید علم است. مدل خروجی محور طراحی شده ایران برای این مرحله به صورت زیر است:

\[Minz = 40.52v_1 + 1272v_2 + 0.59v_3 + w \]
\[38.14u_1 + 0.02u_2 = 1 \]

\[
\begin{align*}
\text{ایران} & : 40.52v_1 + 1272v_2 + 0.59v_3 - 38.14u_1 + 0.02u_2 + 1 \geq 0 \\
\text{ارمنستان} & : 6.57v_1 + 1638v_2 + 0.21v_3 - 59.61u_1 + 0.46u_2 + 1 \geq 0 \\
\text{آذربایجان} & : 7r_1 + 1203r_2 + 0.22r_3 - 13.81u_1 + 0.12u_2 + 1 \geq 0 \\
\text{گرجستان} & : 13.97v_1 + 2704v_2 + 0.18v_3 - 32.33u_1 + 0.72u_2 + 1 \geq 0 \\
\text{اردن} & : 22.29v_1 + 50v_2 + 0.34v_3 - 50.78u_1 + 0.22u_2 + 1 \geq 0 \\
\text{فرانسه} & : 16.99v_1 + 397v_2 + 0.2v_3 - 2.92u_1 + 0.01u_2 + 1 \geq 0 \\
\text{لیبی} & : 23.5v_1 + 4v_2 + 0.3v_3 - 58.27u_1 + 0.85u_2 + 1 \geq 0 \\
\text{عمان} & : 20.98v_1 + 3.43v_2 + 0.17v_3 - 44.224u_1 + 0.08u_2 + 1 \geq 0 \\
\text{پاکستان} & : 10.21v_1 + 80.27v_2 + 0.44v_3 - 3.17u_1 + 2.02u_2 + 1 \geq 0 \\
\text{بحرین} & : 28.86v_1 + 42v_2 + 0.11v_3 - 24.93u_1 + 0.08u_2 + 1 \geq 0 \\
\text{سوریه} & : 20v_1 + 23.24v_2 + 0.12v_3 - 4.07u_1 + 0.05u_2 + 1 \geq 0 \\
\text{ترکیه} & : 20.84v_1 + 577.14v_2 + 0.76v_3 - 108u_1 + 0.31u_2 + 1 \geq 0 \\
\text{امارات} & : 20.93v_1 + 30v_2 + 0.2v_3 - 55.86u_1 + 1.07u_2 + 1 \geq 0 \\
\text{فرانسه} & : 20v_1 + 783v_2 + 0.28v_3 - 6.34u_1 + 0.12u_2 + 1 \geq 0 \\
\end{align*}
\]

\[u_r \geq 0, \quad r = 1, 2, \ldots, s \]
\[v_i \geq 0, \quad i = 1, 2, \ldots, m \]
\[w \text{ free in sign} \]
لازم به اشاره است که ضرایب V و U در مدل بالا، مقادیر واقعی مربوط به ورودی و خروجی کشورها را در این مرحله (تولید علم) نشان می‌دهند. با حذف مدل طراحی شده بالا توسط نرم‌افزار اشاره‌شده، کارایی بخش تحقیق و توسعه ایران در این مرحله و وزنهای مطلوب برای رسیدن به این کارایی به‌دست می‌آید که خروجی نرم‌افزار در جدول ۳ آمده است.

جدول ۳: خروجی نرم‌افزار برای ارزیابی عملکرد تحقیق و توسعه ایران در بخش تولید علم

<table>
<thead>
<tr>
<th>Decision Variable</th>
<th>Solution Value</th>
<th>Unit Cost or Profit $c(j)$</th>
<th>Total Contribution</th>
<th>Reduced Cost</th>
<th>Basis</th>
<th>Status</th>
<th>Allowable Min. $c(j)$</th>
<th>Allowable Max. $c(j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V1</td>
<td>0</td>
<td>40.52</td>
<td>0</td>
<td>24.0907</td>
<td>at bound</td>
<td>16.4293</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>2 V2</td>
<td>0</td>
<td>1,272</td>
<td>0</td>
<td>366.9578</td>
<td>at bound</td>
<td>905.0422</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>3 V3</td>
<td>2.3068</td>
<td>0.59</td>
<td>1.361</td>
<td>0</td>
<td>basic</td>
<td>0.3998</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>4 U1</td>
<td>0.0262</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>basic</td>
<td>-0.3076</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>5 U2</td>
<td>0</td>
<td>0</td>
<td>0.3076</td>
<td>at bound</td>
<td>-0.3076</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>6 W</td>
<td>1.0785</td>
<td>1</td>
<td>1.0785</td>
<td>0</td>
<td>basic</td>
<td>1</td>
<td>1.1796</td>
<td></td>
</tr>
</tbody>
</table>

Objective Function

$\text{(Min.)} = 2.439$

(Not: Shadow Price Solution Exists!!)

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Left Hand Side</th>
<th>Direction</th>
<th>Right Hand Side</th>
<th>Shadow Price</th>
<th>Solution</th>
<th>Allowable Min. RHS</th>
<th>Allowable Max. RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C1</td>
<td>1</td>
<td>=</td>
<td>1</td>
<td></td>
<td>2.4395</td>
<td>0</td>
<td>M</td>
</tr>
<tr>
<td>2 C2</td>
<td>1.4395</td>
<td>>=</td>
<td>0</td>
<td>1.4395</td>
<td>0</td>
<td>(-M) 1.4395</td>
<td></td>
</tr>
<tr>
<td>3 C3</td>
<td>0</td>
<td>>=</td>
<td>0</td>
<td>0</td>
<td>0.309</td>
<td>-0.0739</td>
<td>1.2687</td>
</tr>
<tr>
<td>4 C4</td>
<td>1.2239</td>
<td>>=</td>
<td>0</td>
<td>1.2239</td>
<td>0</td>
<td>(-M) 1.2239</td>
<td></td>
</tr>
<tr>
<td>5 C5</td>
<td>0.6461</td>
<td>>=</td>
<td>0</td>
<td>0.6461</td>
<td>0</td>
<td>(-M) 0.6461</td>
<td></td>
</tr>
<tr>
<td>6 C6</td>
<td>0.5314</td>
<td>>=</td>
<td>0</td>
<td>0.5314</td>
<td>0</td>
<td>(-M) 0.5314</td>
<td></td>
</tr>
<tr>
<td>7 C7</td>
<td>1.4633</td>
<td>>=</td>
<td>0</td>
<td>1.4633</td>
<td>0</td>
<td>(-M) 1.4633</td>
<td></td>
</tr>
<tr>
<td>8 C8</td>
<td>0.2427</td>
<td>>=</td>
<td>0</td>
<td>0.2427</td>
<td>0</td>
<td>(-M) 0.2427</td>
<td></td>
</tr>
<tr>
<td>9 C9</td>
<td>0.3112</td>
<td>>=</td>
<td>0</td>
<td>0.3112</td>
<td>0</td>
<td>(-M) 0.3112</td>
<td></td>
</tr>
<tr>
<td>10 C10</td>
<td>2.0104</td>
<td>>=</td>
<td>0</td>
<td>2.0104</td>
<td>0</td>
<td>(-M) 2.0104</td>
<td></td>
</tr>
<tr>
<td>11 C11</td>
<td>0.6786</td>
<td>>=</td>
<td>0</td>
<td>0.6786</td>
<td>0</td>
<td>(-M) 0.6786</td>
<td></td>
</tr>
<tr>
<td>12 C12</td>
<td>1.2486</td>
<td>>=</td>
<td>0</td>
<td>1.2486</td>
<td>0</td>
<td>(-M) 1.2486</td>
<td></td>
</tr>
<tr>
<td>13 C13</td>
<td>0</td>
<td>>=</td>
<td>0</td>
<td>0.69</td>
<td>-1.2687</td>
<td>2.8246</td>
<td></td>
</tr>
<tr>
<td>14 C14</td>
<td>0.0753</td>
<td>>=</td>
<td>0</td>
<td>0.0753</td>
<td>0</td>
<td>(-M) 0.0753</td>
<td></td>
</tr>
<tr>
<td>15 C15</td>
<td>1.5582</td>
<td>>=</td>
<td>0</td>
<td>1.5582</td>
<td>0</td>
<td>(-M) 1.5582</td>
<td></td>
</tr>
</tbody>
</table>
با استفاده از خروجی این نرم‌افزار، در مرحله تولید علم، تعیین و واحد‌های مرجع را برای آن مشخص کرد. با توجه به خروجی این مرحله مقادیر تابع هدف برای کشور ایران 2/6/39 به دست آمده است (قسطت هاشورخوردگی) و با توجه به آنکه مدل‌های این مقاله از نوع خروجی محور هستند، مقادیر کارایی از معکوس مقادیر تابع هدف به دست می‌آید. بنابراین، مقادیر کارایی ایران در مرحله تولید علم 1/41 درصد است و ایران در این بخش، یک کشور ناکارآمد تلقی می‌شود. در نتیجه، برای هر واحد ناکارآمد، دست کم یک واحده دیگر وجود دارد که با همان وزنه و هدف به دست آمده از حل مدل دارای کارایی یک است. بنابراین، مدل دارای کارآمد، "گروه همتا" همان یا "گروه مرجع" "یک مدل ناکارآمد" گفتگو می‌شود. سوم، باید گروه مرجع برای کشور کارایی ناکارآمد و همچنین، قبیله سایه‌ای 7 آن را نشان دهد.

قمیدی های سایه در تحلیل پوششی داده‌ها برای واحد‌های غیر کارای دیده گردید و در این خصوص ارائه می‌کند. با توجه به خروجی نرم‌افزار برای کشور ایران در مرحله تولید علم، محدودیت‌های سه (مربوط به کشور ایران) و محدودیت‌های 13 (مربوط به کشور ترکیه) دارای قبیله سایه غیرصرف هستند که در خروجی نرم‌افزار جدول 3 با حالت هاشورخوردگی مشخص است. به عبارت دیگر، واحد مجازی برای کشور ایران، از تراکم 309/0 کشور ایران و 69/0 کشور ترکیه ساخته شده است. پس کشور ایران در مرحله تولید علم نسبت به دیگر کشورهای منطقه با ورودی‌های بیشتر، خروجی‌های کمتری ارائه می‌کند. بنابراین، عنصر عدم کارایی آن در دستگرد و عبارت دیگر، واحد می‌توان یافت (در حال مجازی) که با ورودی کمتر از کشور ایران، خروجی بیشتر از آن را ارائه می‌نماید. کشورهای که در این مدل حذف شده‌اند، کاملاً به عنوان سایه‌ای از واحد‌های مرجع نشان می‌دهند. در مجموع 28 مدل مختلف تحلیل پوششی داده‌ها برای هر دو مرحله تولید و انتشار علم طراحی و اجرا گردید. در انتهای لازم است به تحلیل کارایی عملکرد تحقیق و توسعه کشورهای منطقه در دو بخش تولید و بخش انتشار علم پرداخته شود. همان‌طور که از ستون دوم چندالهای 1 و 2 پیداست، نمرات کارایی کشورهای در پژوهش و یک فقر فاز دارد. کشورهای دارای کارایی 1، کشورهای کاوز و کشورهای داری کارایی یکایین 13 کشور تلقی می‌شوند. در مرحله اول، یعنی تولید علم از 14 کشور تحت بررسی، تعداد 10 کشور توانمند بیشترین کارایی علمی از مدل‌های تحلیل پوششی داده‌ها به دست آمده. در این مرحله (تولید علم)

| 1. peer group | 2. reference group | 3. shadow price |
کشورهای ارمنستان، آذربایجان، گرجستان، لبنان، عمان، پاکستان، عربستان، سوریه، ترکیه، و امارات با یکدیگر به‌صورت کامل تعهد کرده‌اند. یعنی کشورهای کارایی منطقه و کشورهای ایران، اردن، ترکیه، و امارات با همکاری به‌طور مشترک و قراردادهای امتدادی به‌طور مشترک، قراردادهای ارمنستان، آذربایجان، عربستان، ترکیه، و امارات با همکاری به‌طور مشترک دوباره پذیرفته‌اند.

پرای ایران نشان می‌دهد که بخش تحقیق و توسعه کشور در بخش تولید علم می‌تواند تناهی با استفاده از ۹۱٪ منبع موحود. در نتیجه، علم و مهندسی، تعداد پژوهشگران تحقیق و توسعه، و هزینه تحقیق و توسعه همین می‌تواند در خدمت رساندن استراتژی کشور در مورد این انتشار علم شناخته شده‌اند. در این میان، فقط کشورهای پاکستان و سوریه به‌طور مشترک که در مرحله تولید و انتشار علم در منطقه، نمره کارایی کامل را به‌شکل ندارند. از نکات مورد نظر این است که علم و مهندسی تحقیق و توسعه ایران در منطقه در بخش تولید علم ناکارا و در بخش انتشار علم کاراست.

۷. نتیجه‌گیری و پیشنهادات

در صفحه سازی و رقابت شدید، سازمان‌های تحقیق و توسعه ملی در تقویت شدیدی جهت فعالیت مؤثر و کارا قرار گرفته‌اند. زمینه‌های که بخشی از سرمایه‌های ملی بر روی مراکز تحقیق و توسعه سرمایه‌گذاری می‌شود، این مراکز مسئول پاسخگویی در قبال علمکردهای خود به جامعه هستند. این مسئولیت سباست گذران و مدیران علمی است که از برنامه و مقایسه علمکردهای از سازمان‌های خیابان و در دوره‌های زمانی مشخص انجام دهند. از طرفی، ازبایی علمکرد بخش تحقیق و توسعه کشورها به‌دلیل اهمیت که در رشد و پیشرفت اقتصادی کشورها دارد از اهمیت ویژه‌ای برخوردار است. شیوه‌های رایج ازبایی علمکرد در کل، سطح خروجی‌های منتج از علمکردهای سیستم سازمان‌های را نمره قرار می‌دهند، در حالی که با یکدیگر سیستم‌ها به‌راحتی می‌توان دریافت که دستیابی به خروجی‌ها فقط در بستر بهره‌برداری
از ورودی‌ها و یا استفاده از فرآیندهای مناسب امکان پذیر است. بنابراین، توجه صرف به خروجی‌ها در ارژین‌های ثابت و ماده‌های عملکردی را به اشتیاق و خواهر کنند. در این پژوهش، از فن تحلیل پویا داده‌ها به عنوان یک ابزار مؤثر برای ارزیابی و اعمال در تصمیم‌گیری که دارای اجزای ورودی و خروجی شامل هناك، استفاده شده و عملکرد تحقیق و توسیع بخش علم و مهندسی کشور در منطقه در دوره تولید و تبادل علم مورد ارزیابی قرار گرفته است. نتایج حاصل از ارزیابی کشورها در مرحله اولیه (تولید علم) حاکی از آن بود که از ۱۴ کشور تحت بررسی در این مرحله، عداد چهار کشور از جمله ایران عامل کننده نقش ناگاسی است. علاوه بر این کشورها، توسعه‌دهنده دارای استاندارد بیشتری است. ما باید از منابع خود (ورودی‌های مرحله تولید علم) در راستای استانداردهای همانهای خود (خروجی‌های مرحله تولید علم) کنند. نتایج حاصل از مرحله انتشار علم جزو انجام آن است که از ۱۴ کشور تحت بررسی در این بخش، فقط تعداد نخ پژوهش‌های توسعه‌دهنده از این مرحله بیشترین کارایی را به‌دست آورده. از نکات مهم توجه این است که ایران، در زمینه کارهای علمی مرحله‌ای که در بخش تولید علم عامل کننده در منطقه نسبت به دیگر کشورها ضعیف است. این جابجایی‌های جمهوری اسلامی ایران، رتبه‌بندی‌های تفسیری و با اهداف ترسیم شده در سند چشم‌انداز بیست ساله که دستیابی به جایگاه اول اقتصادی، علمی، و فناوری در منطقه آسیای جنوب غربی با تأکید بر جنبه نرم‌افزاری و تولید علم است و نیازهای علمی و نواوری کشور که دستیابی به رتبه اول براساس شاخص نوآوری است، فاصله‌ای زیادی دارد. این نتایج، با توجه به شاخص‌های انتخابی (Liu and Lu 2009) در خصوص وضعیت توأم‌نمایی نوآوری ایران براساس شاخص تکنیکی تأیید می‌شود. قطعه‌های نیت پژوهش حاضر نسبت به این پژوهش مشابه دارای که در حوزه ارژین‌های عملکرد بخش تحقیق و توسیع کشور مورد نظر است. ارزیابی عملکرد تحقیق و توسیع کشور در دوره تبدیل و انتشار علم است که لازم به وقوع پذیرفته‌ای خارجی صورت گرفته می‌باشد و هانگکنگ و لی و لو (Liu and Lu 2010) مطباق می‌کند. با توجه به اینکه اطلاعات این بررسی به جنگ داخلی برای دو و هیچ‌کنن، یا دیگر نظر گرفتن اینکه به دلایل محدودیت‌های اطلاعات، مهم می‌باشد. نوآوری در ارژین‌های لازم نشانه است، بپیشنهاد می‌شود در پژوهش‌های آینده دختر نظر گرفتن ارزیابی و خروجی‌های پیشرفت و به‌روزرسانی برای در مرحله تولید و انتشار علم، عملکرد بخش تحقیق و توسیع ایران در مقایسه با دیگر کشورها ارزیابی شود. علاوه بر این، پیشنهاد می‌گردد که از پژوهش‌های ارژین‌های عملکرد تحقیق و توسیع سازمان‌های داخلی کشور نیز استفاده گردد.
Failure Finding the Iran's Research and Development Performance in both Sectors: the Production and Publishing of Knowledge Using Network DEA

Mohammad Hossein Tahari Mehrjadi*
MA in Industrial Management

Hamid Babaei Meybodi
MA in Industrial Management

Somaye javidi
MA in Industrial Management

Abstract: In the era of globalization and intense competition, the research and development national organizations have been in the strong dilemma for the efficient activities. When part of the national capital would be invested on research and development centers, these centers are responsible of the answer for their performance. The purpose of this study was to evaluate the relative efficiency the Iran's research and development performance in the region in both sectors: the production and publishing of knowledge using Network DEA. So the research and development activities from 14 countries region were extracted to assess their relative efficiency. In the production sector, the inputs such as enrollment rates in the sciences and engineering fields, number researchers, costs research and development and the outputs such as number patents, number papers engineering and scientific were used. In sector publishing of knowledge, the inputs such as number patents, number papers engineering and scientific and outputs such as export technology modern and mean reference to the articles were used. The results showed that in the sector of the production of knowledge, four countries and in the sector of the publishing of knowledge, nine countries were inefficient. It was noteworthy that Iran in the sector of the production of knowledge did not have the proper place between the selected countries, but in the sector of the publishing of knowledge it was able to gain maximum efficiency from the DEA models..

Keywords: relative performance, research and development, DEA, network DEA

*Corresponding author: hooseintahari@yahoo.com
1. babaemaybodihamid@yahoo.com 2. somayejavidi@yahoo.com