Volume 36, Issue 3 (Spring 2021)                   ... 2021, 36(3): 861-892 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadnia A, CheshmehSohrabi M, shaban A, Taheri Demneh M. Identifying Key Factors Affecting on Future of Text Information Retrieval: a Cross-Impact Analysis Method. .... 2021; 36 (3) :861-892
URL: http://jipm.irandoc.ac.ir/article-1-4560-en.html
University of Isfahan; Isfahan, Iran
Abstract:   (1338 Views)
In contemporary world where information is all about human beings, what matters most is the accurate retrieval of information. Information retrieval has always been a human concern, which is why it is constantly undergoing many changes. One of the issues that information retrieval experts have always been thinking about is designing an efficient information retrieval system. Therefore, by identifying the key factors affecting the future of information retrieval, we can be more successful in designing such a system and have a greater share in the future of information retrieval. In the present study resource review and cross-impact analysis methods, and MicMac software was used to analyze interactions and identify key factors. The results of the present study lead to the identification of 13 key factors: 1. conversion of traditional libraries to digital, 2. development and upgrading of search engines, 3. new content formats, 4. intelligence of data collection methods, 5. convergence media, 6. increasing content production, 7. new generation of the Web, 8. automating information retrieval processes, 9. emergence of hybrid resources, 10. big data, 11. cloud processing, 12. increasing Internet resources, and 13. use of artificial intelligence and natural language processing in effective information retrieval on the future of information retrieval. Therefore, in the era of the fifth industrial revolution, it is necessary for information science specialists to be equipped with technological tool more than before.
Full-Text [PDF 1671 kb]   (575 Downloads)    
Type of Study: Research | Subject: Information Storage and Retrieval
Received: 2020/08/31 | Accepted: 2020/11/29 | Published: 2021/04/5

References
1. پدرام، عبدالرحیم، محمد ازگلی، خسرو حسنلو، مسعود منزوی، حسین جمالی چافی، سید کمال طبائیان، بهنام نپوری‌زاده، و محسن افتاده‌حال. 1388. آینده‌پژوهی: مفاهیم، روش‌ها. تهران: مرکز آینده‌پژوهی علوم و فناوری دفاعی، مؤسسه آموزش و تحقیقات صنایع دفاعی.
2. رشیدارده، حبیب‌الله، و سعید خزائی. 1395. تحلیل کلان روندهای مؤثر بر آینده بازار صنعت بانکداری با رویکرد تحلیل ساختاری، تحلیل تأثیر متقابل (برگذر). تحقیقات بازاریابی نوین 3 (22): 67-86.
3. زالی، نادر. 1392. آینده‌نگاری راهبردی در برنامه‌ریزی و توسعه منطقه‌ای. تهران: پژوهشکده مطالعات راهبردی.
4. زوتو، سینزیادال، و آرتور لوگمایر. 2016. همگرایی رسانه‌ای. ترجمه سمیه لبافی، امیر مختاری و محدثه عقبایی. 1397. تهران: دنیای اقتصاد.
5. شقاقی، مهدی. 1392. فصل مشترک نظریه‌های علم ارتباطات با مسائل علوم کتابداری و اطلاع‌رسانی چیست؟ کتابداری و اطلاع‌رسانی 16 (2): 119-142.
6. گرایی، احسان. 1395. آینده‌نگاری راهبردی آموزش علم اطلاعات و دانش‌شناسی در ایران با رویکرد برنامه‌ریزی سناریو مبنا. پایان‌نامه دکتری علم اطلاعات و دانش‌شناسی. دانشگاه شهید چمران اهواز، دانشکده علوم تربیتی و روانشناسی، گروه علم اطلاعات و دانش‌شناسی.
7. Abderrahim, M. A., M. Dib, M. E. A. Abderrahim, & M. A. Chikh. 2016. Semantic indexing of Arabic texts for information retrieval system. International Journal of Speech Technology 19 (2): 229-236. [DOI:10.1007/s10772-015-9307-3]
8. Acid, S., L. M. De Campos, J. M. Fernández-Luna, & J. F. Huete. 2003. An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems 18 (2): 251-265. [DOI:10.1002/int.10088]
9. Akmal, S., L-H. Shih, R. & Batres. 2014. Ontology-based similarity for product information retrieval. Computers in Industry 65 (1): 91-107. [DOI:10.1016/j.compind.2013.07.011]
10. Alghamdi, N. S., W. Rahayu, E. & Pardede. 2014. Semantic-based structural and content indexing for the efficient retrieval of queries over large XML data repositories. Future Generation Computer Systems 37: 212-231. [DOI:10.1016/j.future.2014.02.010]
11. Allan, J., J. Aslam, N. Belkin, C. Buckley, J. Callan, B. Croft, . . . & D. J. Harper. 2003. Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval. University of Massachusetts Amherst, September 2002. Paper presented at the ACM SIGIR Forum. [DOI:10.1145/945546.945549]
12. Almeida-Santana, A., & S. Moreno-Gil. 2017. New trends in information search and their influence on destination loyalty: Digital destinations and relationship marketing. Journal of destination marketing & management 6 (2): 150-161. [DOI:10.1016/j.jdmm.2017.02.003]
13. Amati, G. 2018. Information Retrieval. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of Database Systems (pp. 1970-1975). New York, NY: Springer New York. [DOI:10.1007/978-1-4614-8265-9_915]
14. Arcade, J., M. Godet, F. Meunier, & F. Roubelat. 1999. Structural analysis with the MICMAC method & Actor's strategy with MACTOR method. Futures Research Methodology, American Council for the United Nations University: The Millennium Project.
15. Baeza-Yates, R., & B. Ribeiro-Neto. 2011. Modern information retrieval: The Concepts and Technology behind Search. 2nd ed. New York: Addison-Wesley Professional.
16. Bates, M. J. 1990. Where should the person stop and the information search interface start? Information Processing & Management 26 (5): 575-591. [DOI:10.1016/0306-4573(90)90103-9]
17. Benjumea-Arias, M., L. Castañeda, & A. Valencia-Arias. 2016. Structural analysis of strategic variables through micmac use: Case study. Mediterranean Journal of Social Sciences 7 (4): 11. [DOI:10.5901/mjss.2016.v7n4p11]
18. Berners-lee, T. 2019. 30 years on, what's in # for the web? (http://webfoundation.org/2019/03/web-birthday-30 accessed Feb. 20, 2019)
19. Broder, A. 2006. The future of web search: From information retrieval to information supply. Paper presented at the International Workshop on Next Generation Information Technologies and Systems. Berlin Heidelberg. [DOI:10.1007/11780991_40]
20. Dator, J. 1997. Futures studies as Applied knowledge. In R. Slaughter (Ed.), New Thinking for a New Millennium. London: Routledge.
21. Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, & R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American society for information science 41 (6): 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 [DOI:10.1002/(SICI)1097-4571(199009)41:63.0.CO;2-9]
22. Elsevier. 2019. How-scopus-works https://www.elsevier.com/solutions/scopus/how-scopus-works (accessed March 20, 2019)
23. Encyclopedia Britanica. 2018. Information retrieval. http://www.britanica.com/technology/information-retrieval (accessed June 18, 2018)
24. Godet, M. 1994. From anticipation to action: A handbook of strategic prospective. UNESCO Publishing.
25. Godet, M., P. Durance, & A. Gerber. 2008. Strategic foresight: use and misuse of scenario building. Work Paper Laboratoire d'Innovation de Prospective Stratégique et d'Organisation, Paris.
26. Gordon, T. J. 1994. Cross-impact method. AC/UNU Millennium Project: Future research methodology http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.7337&rep=rep1&type=pdf. (accessed Feb. 12, 2018)
27. Guo, J., Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, ... & X. Cheng. 2019. A deep look into neural ranking models for information retrieval. arXiv preprint arXiv:1903.06902. [DOI:10.1016/j.ipm.2019.102067]
28. Hancock, T., & C. Bezold. 1994. Possible futures, preferable futures. Healthcare Forum Journal 37 (2): 23-29.
29. Hjørland, B. 2015. The phrase "information storage and retrieval"(IS&R): An historical note. Journal of the Association for Information Science and Technology 66 (6): 1299-1302. [DOI:10.1002/asi.23226]
30. Ho lee, J., M. Ho kim, & Y. Joon lee. 1993. Information retrieval based on conceptual distance in IS-A hierarchies. Journal of documentation 49 (2): 188-207. [DOI:10.1108/eb026913]
31. Internetlivestats. 2020. Google Search Statistics. https://www.internetlivestats.com/google-search-statistics/ (accessed Nov. 15, 2020)
32. ITU. 2019. Statistics. https://www.itu.int/en/itu-d/statistics/pages/stat/default.aspx (accessed Aug. 23, 2019).
33. Jones, S. K. 1999. Information retrieval and artificial intelligence. Artificial Intelligence 114: 257-281. [DOI:10.1016/S0004-3702(99)00075-2]
34. Kolomiyets, O., & M. F. Moens. 2011. A survey on question answering technology from an information retrieval perspective. Information Sciences 181 (24): 5412-5434. [DOI:10.1016/j.ins.2011.07.047]
35. Kraaij, W., R. Pohlmann, & D. Hiemstra. 2000. Twenty-one at TREC-8: using language technology for information retrieval. National Institute of Standards and Technology. Special Publication SP 246: 285-300.
36. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspxKuosa, T. 2014. Towards strategic intelligence: foresight, intelligence, and policy-making. Helsinki: Dynamic Futures.
37. Larson, R. R. 2017. Information retrieval systems. In J. D McDonald & M. L. Clark (Eds.), Encyclopedia of library and information sciences. Boca Raton. https://doi.org/10.1081/E-ELIS4 [DOI:10.1081/E-ELIS4 (accessed March 18, 2019)]
38. Lewandowski, D. 2005. Web searching, search engines and Information Retrieval. Information Services & Use 25 (3-4): 137-147. [DOI:10.3233/ISU-2005-253-402]
39. Liu, J., X. Kong, X. Zhou, L. Wang, D. Zhang, I. Lee, ... & F. Xia. 2019. Data Mining and Information Retrieval in the 21st century: A bibliographic review. Computer Science Review 34: 100-193. [DOI:10.1016/j.cosrev.2019.100193]
40. Losee, R. M. 1997. Comparing Boolean and probabilistic information retrieval systems across queries and disciplines. Journal of the American society for information science 48 (2): 143-156. https://doi.org/10.1002/(SICI)1097-4571(199702)48:2<143::AID-ASI5>3.0.CO;2-Y [DOI:10.1002/(SICI)1097-4571(199702)48:23.0.CO;2-Y]
41. Martin, C., & H. Leurent. 2017. Technology and Innovation for the Future of Production: Accelerating Value Creation. In World Economic Forum. Geneva Switzerland.
42. Mittendorf, E., & P. Schäuble. 2000. Information retrieval can cope with many errors. Information Retrieval 3 (3): 189-216. [DOI:10.1023/A:1026564708926]
43. Mitra, B., & N. Craswell. 2018. An introduction to neural information retrieval. Foundations and Trends® in Information Retrieval 13 (1): 1-126. [DOI:10.1561/1500000061]
44. Muddamalle, M. R. 1998. Natural language versus controlled vocabulary in information retrieval: a case study in soil mechanics. Journal of the American society for information science 49 (10): 881-887. https://doi.org/10.1002/(SICI)1097-4571(199808)49:10<881::AID-ASI4>3.0.CO;2-M [DOI:10.1002/(SICI)1097-4571(199808)49:103.0.CO;2-M]
45. Noh, Y.-H. 2002. A study on the estimation of performance of the concept-based information retrieval model for searching the Web. Journal of information science 28 (5): 407-415. [DOI:10.1177/016555150202800506]
46. O'Connor, S., & P. Sidorko. 2010. Imagine your library's future: scenario planning for libraries and information organisations. New Delhi: Chandos Publishing.
47. Onal, K. D., Y. Zhang, I. S. Altingovde, M. M. Rahman, P. Karagoz, A. Braylan, ... & A. Angert. 2018. Neural information retrieval: at the end of the early years. Information Retrieval Journal 21 (2-3): 111-182. [DOI:10.1007/s10791-017-9321-y]
48. Paice, C. D. 1991. A thesaural model of information retrieval. Information Processing & Management 27 (5): 433-447. [DOI:10.1016/0306-4573(91)90061-P]
49. Prakash, S., H. R. Shashidhara, and Raju GT. 2013. The Role of an Information Retrieval in the Current Era of Vast Computer Science Stream. International Journal of Soft Computing and Engineering 3 (3): 139-143.
50. Qin, J., H. Wang, & H. Shao. 2009. Expansion model of semantic query based on ontology. Paper presented at the 2009 Second Pacific-Asia Conference on Web Mining and Web-based Application. Wuhan, China. [DOI:10.1109/WMWA.2009.31]
51. Sanderson, M., & W. B. Croft. 2012. The history of information retrieval research. Proceedings of the IEEE, 100 (Special Centennial Issue): 1444-1451. [DOI:10.1109/JPROC.2012.2189916]
52. Schatz, B. R. 1997. Information retrieval in digital libraries: Bringing search to the net. Science 275: 327-334. [DOI:10.1126/science.275.5298.327]
53. Sebastiani, F. 1998. On the role of logic in information retrieval. Information Processing & Management 34 (1): 1-18. [DOI:10.1016/S0306-4573(97)00055-1]
54. Singhal, A. 2008. Web Search: Challenges and Directions. In European Conference on Information Retrieval (pp. 2-2). Berlin, Heidelberg: Springer. [DOI:10.1007/978-3-540-78646-7_2]
55. Slaughter, R. A. 2002. New thinking for a New Millennium: The knowledge base of futures studies. Newyork: Routledge. [DOI:10.4324/9780203434536]
56. Slaughter, R. A. 2010. The biggest wake up call in history? Brisbane: Foresight International.
57. Smith, L. C. 1976. Artificial intelligence in information retrieval systems. Information Processing & Management 12 (3): 189-222. [DOI:10.1016/0306-4573(76)90005-4]
58. Sparck Jones, K., & P. Willett. 1997. Overall introduction. In Readings in information retrieval (pp. 1-7). San Francisco, USA: Morgan Kaufmann Publishers Inc.
59. Stella, G., & D. Clarke. 2017. Thesaurus. https://www.isko.org/cyclo/thesaurus (accessed Nov. 15, 2020).
60. Suárez Barón, M., & K. Salinas Valencia. 2009. An approach to semantic indexing and information retrieval. Revista Facultad de Ingeniería Universidad de Antioquia 48: 174-187.
61. Suebsin, C., & N. Gerdsri. 2009. Key factors driving the success of technology adoption: Case examples of ERP adoption. In PICMET'09-2009 Portland International Conference on Management of Engineering & Technology (pp. 2638-2643). IEEE. [DOI:10.1109/PICMET.2009.5261818]
62. Tian, X., X. Du, H. Hu, & H. Li. 2009. Modeling individual cognitive structure in contextual information retrieval. Computers & Mathematics with Applications 57 (6): 1048-1056. [DOI:10.1016/j.camwa.2008.10.059]
63. Turing, A. 1950. Computing machinery and intelligence-AM Turing. Mind 59 (236): 433. [DOI:10.1093/mind/LIX.236.433]
64. Vallet, D., M. Fernández, & P. Castells. 2005. An ontology-based information retrieval model. In European Semantic Web Conference (pp. 455-470). Berlin, Heidelberg: Springer. [DOI:10.1007/11431053_31]
65. Wan, G. G., and Z. Liu. 2008. Content-based information retrieval and digital libraries. Information technology and libraries 27 (1): 41-47. [DOI:10.6017/ital.v27i1.3262]
66. Xie, L., P. Pan, & Y. Lu. 2015. Analyzing semantic correlation for cross-modal retrieval. Multimedia Systems 21 (6): 525-539. [DOI:10.1007/s00530-014-0397-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Information processing and Management

Designed & Developed by : Yektaweb