Volume 36, Issue 3 (Spring 2021)                   ... 2021, 36(3): 737-766 | Back to browse issues page

XML Persian Abstract Print

University of Tehran; Tehran, Iran
Abstract:   (1347 Views)
Despite abundant research on data quality, no research has so far been conducted which can provide a comprehensive view of data quality methodologies. In the present study, 3909 articles and related researches in the period before 2020 were selected from Web of Science (WOS) and Scopus citation indexes, from among which 27 articles were finally evaluated in line with the research goals, using meta-synthesis method and inclusion criteria. In this regard, while applying the system view and using the open coding method, the related codes to the three main categories of the systemic approach (input, process and output) were extracted. The similar concepts were categorized in sub-codes and then the sub-codes in main codes. The main inputs included the context and status of organization, data and information resources, and data quality dimensions. Steps of data quality methodologies were also classified into three main stages: state reconstruction, measurement/evaluation, and improvement. In addition, data quality outputs fell into six general categories: list of activities and the related techniques for data quality improvement, controlled or redesigned processes, measured or improved flows and databases, data quality status results, revised data quality policies or rules, and costs and benefits. The results of this study can provide an appropriate instrument for identifying the existing data quality methodologies as well as evaluating the strengths and weaknesses of data quality methodologies.
Full-Text [PDF 880 kb]   (508 Downloads)    
Type of Study: Research | Subject: Quality Management
Received: 2020/05/18 | Accepted: 2020/09/15 | Published: 2021/04/5

1. محمدخانی، کامران، حمیده رشادت‌جو، و معصومه روحانیپور. 1391. بررسی رابطه تفکر سیستمی و میزان خلاقیت مدیران مدارس متوسطه دخترانه آموزش و پرورش شهر تهران و تأثیر آن بر آینده‌پژوهی. آینده‌پژوهی مدیریت 23 (ویژه‌نامه شماره 96): 51-63.
2. محمدی، مهدی، و بهمن حاجی‌پور. 1397. شناسایی الگوی همکاری رقابت در صنعت خودروسازی ایران بر اساس رویکرد سیستمی: مطالعه داده‌بنیاد. بررسی‌های بازرگانی 16 (88-89): 1-22.
3. Alhassan, I., D. Sammon, & M. Daly. 2019. Critical success factors for data governance: a theory building approach. Information Systems Management 36 (2): 98-110. [DOI:10.1080/10580530.2019.1589670]
4. Aljumaili, M., R. Karim, & P. Tretten. 2016. Metadata-based data quality assessment. VINE Journal of Information and Knowledge Management Systems‌ 46 (2): 232-250. [DOI:10.1108/VJIKMS-11-2015-0059]
5. Azeroual, O., G. Saake, & M. Abuosba. 2019. Data quality measures and data cleansing for research information systems. Journal of Digital Information Management 16 (1): 12-21.
6. Bargh, M. S., J. van Dijk, & S. Choenni. 2015. Dynamic data quality management framework using issue tracking systems. IADIS International Journal on Computer Science & Information Systems 10 (2): ‌32-51.
7. Batini, C., and M. Scannapieco. 2016. Data and information quality: Dimensions. Principles and Techniques. Cham, Switzerland: Springer. [DOI:10.1007/978-3-319-24106-7]
8. Batini, C., C. Cappiello, C. Francalanci, & A. Maurino. 2009. Methodologies for data quality assessment and improvement. ACM computing surveys (CSUR) 41 (3): 1-52. [DOI:10.1145/1541880.1541883]
9. Batini, C., D. Barone, M. Mastrella, A. Maurino, & C. Ruffini. 2007. A Framework and a Methodology for Data Quality Assessment and Monitoring. In International Conference on Information Quality (ICIQ). Cambridge. USA. 333-346.‌
10. Batini, C., F. Cabitza, C. Cappiello, & C. Francalanci. 2008. A comprehensive data quality methodology for web and structured data. International Journal of Innovative Computing and Applications 1 (3): 205-218.‌ [DOI:10.1504/IJICA.2008.019688]
11. Beck, C. 2002. Mothering multiples: a meta-synthesis of qualitative research. Maternal and Child Nursing 27 (4): 214-221. [DOI:10.1097/00005721-200207000-00004]
12. Berti-Équille, L., I. Comyn-Wattiau, M. Cosquer, Z. Kedad, S. Nugier, V. Peralta, & V. Thion-Goasdoué. 2011. Assessment and analysis of information quality: a multidimensional model and case studies. International Journal of Information Quality 2 (4): 300-323.‌ [DOI:10.1504/IJIQ.2011.043780]
13. Bringel, H., A. Caetano, & J. Tribolet. 2004. Business process modeling towards data quality assurance; an organizational engineering approach. In International Conference on Enterprise Information Systems. 4. 565-568. SCITEPRESS. Porto, Portugal.
14. Bugajski, J., & R. L. Grossman. 2007. An Alert Management Approach To Data Quality: Lessons Learned From The Visa Data Authority Program. In International Conference on Information Quality (ICIQ). Cambridge. USA. 5-18.‌‌Cambridge 5-18.‌‌
15. Caballero, I., & M. Piattini. 2003. CALDEA: a data quality model based on maturity levels. In Third International Conference on Quality Software, 2003. Proceedings. (pp. 380-387). IEEE.‌ Texas, USA. [DOI:10.1109/QSIC.2003.1319125]
16. Caballero, I., A. Caro, C. Calero, & M. Piattini. 2008. IQM3: Information Quality Management Maturity Model. Journal of Universal Computer Science 14 (22): 3658-3685.‌
17. Caballero, I., A. Caro, M. Piattini, & C. Calero. 2005. Improving Information Quality Management Using Caldea and Evamecal. In International Conference on Information Quality (ICIQ).‌ Cambridge, USA.‌
18. Caballero, I., E. Verbo, C. Calero, & M. Piattini. 2008. MMPRO: A Methodology Based on ISO/IEC 15939 to Draw Up Data Quality Measurement Processes. In International Conference on Information Quality (ICIQ).‌ Cambridge, USA. 326-340.‌
19. Cappiello, C., C. Francalanci, and B. Pernici. 2005. A self-monitoring system to satisfy data quality requirements. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems". Berlin, Heidelberg: Springer. pp. 1535-1552. [DOI:10.1007/11575801_37]
20. Cappiello, C., P. Ficiaro, & B. Pernici. 2006. HIQM: A methodology for information quality monitoring, measurement, and improvement. In International Conference on Conceptual Modeling (pp. 339-351). Berlin, Heidelberg: Springer. [DOI:10.1007/11908883_41]
21. Dejaeger, K., B. Hamers, J. Poelmans, & B. Baesens. 2010. A novel approach to the evaluation and improvement of data quality in the financial sector. In International Conference on Information Quality (ICIQ).‌ Cambridge, USA.
22. English, L. P. 1999. Improving data warehouse and business information quality: methods for reducing costs and increasing profits. (Vol. 1). New York: Wiley.
23. Fadahunsi, K. P., J. T. Akinlua, S. O'Connor, P. A. Wark, J. Gallagher, C. Carroll, and J. O'Donoghue. 2019. Protocol for a systematic review and qualitative synthesis of information quality frameworks in eHealth. BMJ open 9 (3): e024722. [DOI:10.1136/bmjopen-2018-024722]
24. Falorsi, P. D., S. Pallara, A. Pavone, A. Alessandroni, E. Massella, & M. Scannapieco. 2003. Improving the quality of toponymic data in the Italian public administration. In Proceedings of the ICDT (Vol. 3).
25. Ge, M., & M. Helfert. 2008. Data and information quality assessment in information manufacturing systems. In International Conference on Business Information Systems 380-389. Berlin, Heidelberg: Springer.‌ [DOI:10.1007/978-3-540-79396-0_33]
26. _____, & D. Jannach. 2011. Information quality assessment: Validating measurement dimensions and processes. www.aisel.aisnet.org (accessed June 26, 2019).
27. Günther, L. C., E. Colangelo, H. H. Wiendahl, & C. Bauer. 2019. Data quality assessment for improved decision-making: a methodology for small and medium-sized enterprises. Procedia Manufacturing 29: 583-591.‌ [DOI:10.1016/j.promfg.2019.02.114]
28. Huh, Y. U., F. R. Keller, T. C. Redman, & A. R. Watkins. 1990. Data quality. Information and software technology 32 (8): 559-565.‌ [DOI:10.1016/0950-5849(90)90146-I]
29. Irny, S. I., and A. A. Rose. 2005. Designing a Strategic Information Systems Planning Methodology for Malaysian Institutes of Higher Learning (isp-ipta). Universiti of Teknologi Malaysia.
30. Jeusfeld, M. A., C. Quix, & M. Jarke. 1998, November. Design and analysis of quality information for data warehouses. In International Conference on Conceptual Modeling (pp. 349-362). Berlin, Heidelberg: Springer. [DOI:10.1007/978-3-540-49524-6_28]
31. Kilkenny, M. F. and K. M. Robinson. 2018. Data quality: "Garbage in-garbage out". Health Information Management Journal 47 (3): 103-105. [DOI:10.1177/1833358318774357]
32. Lee, Y. W., D. M. Strong, B. K. Kahn, & R. Y. Wang. 2002. AIMQ: a methodology for information quality assessment. Information & Management 40 (2): 133-146.‌ [DOI:10.1016/S0378-7206(02)00043-5]
33. Liu, Z., Q. Chen, & L. Cai. 2018. Application of Requirement-oriented Data Quality Evaluation Method. In 2018 19th IEEE/ ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 407-412). IEEE.‌ Busan, Korea. [DOI:10.1109/SNPD.2018.8441103]
34. Loshin, D. 2001. Enterprise knowledge management: The data quality approach. California: Morgan Kaufmann press. [DOI:10.1016/B978-012455840-3.50003-0]
35. _____. 2010. The practitioner's guide to data quality improvement. California: Morgan Kaufmann press.
36. Man, Y., L. Wei, H. Gang, & G. Juntao. 2010. A novel data quality controlling and assessing model based on rules. In 2010 Third International Symposium on Electronic Commerce and Security (pp. 29-32). IEEE. Nanchang, China‌. [DOI:10.1109/ISECS.2010.15]
37. McGilvray, D. 2008. Executing data quality projects: Ten steps to quality data and trusted information (TM). California: Morgan Kaufmann press.
38. Noblit, G. W. and R. D. Hare. 1988. Meta-ethnography: Synthesizing qualitative studies. (Vol. 11). California: Sage. [DOI:10.4135/9781412985000]
39. Oxford dictionaries. 2020. Retrieved from oxford dictionaries: https://www.oxfordlearnersdictionaries.com/definition/americanenglish/methodology (accessed Feb. 18, 2019).
40. Redman, T. C. 2013. Data's credibility problem. Harvard Business Review 91 (12): 84-88.
41. _____, and A. Blanton. 1996. Data quality for the information age. Norwood: Artech House.
42. Sandelowski, M., and J. Barroso. 2006. Handbook for synthesizing qualitative research. New York: Springer publishing company.
43. Sandelowski M., S. Docherty, and C. Emden. 1997 Qualitative Meta synthesis: Issues and Techniques. Research in Nursing and Health 20: 365-371. https://doi.org/10.1002/(SICI)1098-240X(199708)20:4<365::AID-NUR9>3.0.CO;2-E [DOI:10.1002/(SICI)1098-240X(199708)20:43.0.CO;2-E]
44. Shankaranarayan, G., M. Ziad, & R. Y. Wang. 2003. Managing data quality in dynamic decision environments: An information product approach. Journal of Database Management (JDM) 14 (4): 14-32.‌ [DOI:10.4018/jdm.2003100102]
45. Shirish, T. S. 2013. Research methodology in education. Carolina: Lulu publishing company.
46. Siau, K., and Y. Long. 2005. Synthesizing e-government stage models-a meta-synthesis based on meta-ethnography approach. Industrial Management & Data Systems 105 (4): 443-458. [DOI:10.1108/02635570510592352]
47. Sidi, F., P. H. S. Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, and A. Mustapha. 2012. March. Data quality: A survey of data quality dimensions. In 2012 International Conference on Information Retrieval & Knowledge Management (pp. 300-304). IEEE. Kuala Lumpur. [DOI:10.1109/InfRKM.2012.6204995]
48. Silvola, R., J. Harkonen, O. Vilppola, H. Kropsu-Vehkapera, & H. Haapasalo. 2016. Data quality assessment and improvement. International Journal of Business Information Systems 22 (1): 62-81.‌ [DOI:10.1504/IJBIS.2016.075718]
49. Su, Y., & Z. Jin. 2007. Assuring Information Quality in Knowledge intensive business services. In 2007 International Conference on Wireless Communications, Networking and Mobile Computing (pp. 3243-3246). IEEE.‌ Shanghai, China. [DOI:10.1109/WICOM.2007.803]
50. Tayi, G. K., & D. P. Ballou. 1998. Examining data quality. Communications of the ACM 41 (2): 54-57. [DOI:10.1145/269012.269021]
51. Vaziri, R., M. Mohsenzadeh, & J. Habibi. 2019. Measuring data quality with weighted metrics. Total Quality Management & Business Excellence 30 (5-6): 708-720. [DOI:10.1080/14783363.2017.1332954]
52. Wang, R. Y. 1998. A product perspective on total data quality management. Communications of the ACM 41 (2): 58-65. [DOI:10.1145/269012.269022]
53. _____, V. C. Storey, and C. P. Firth. 1995. A framework for analysis of data quality research. IEEE transactions on knowledge and data engineering 7 (4): 623-640. [DOI:10.1109/69.404034]
54. Weiskopf, N. G., and C. Weng. 2013. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association 20 (1): 144-151. [DOI:10.1136/amiajnl-2011-000681]
55. Wijnhoven, F., R. Boelens, R. Middel, & K. Louissen. 2007. Total data quality management: A study of bridging rigor and relevance.‌ European conference on information systems (ECIS). Illinois, USA.
56. Woodall, P., A. Borek, and A. K. Parlikad. 2013. Data quality assessment: the hybrid approach. Information & Management 50 (7): 369-382. [DOI:10.1016/j.im.2013.05.009]
57. Worthington, J. C., & G. Brilis. 2000. How good are my data?: Information quality assessment methodology. Quality Assurance 8 (3-4): 245-260.‌ [DOI:10.1080/10529410052852394]
58. Zaveri, A., A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, and P. Hitzler. 2013. Quality assessment methodologies for linked open data. Submitted to Semantic Web Journal 1 (1): 1-5.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.