machine learning algorithms to prevent the spread of infectious diseases based on effective features in the diagnosis of Covid-19

Document Type : Original Article

Authors

1 Islamic Azad University; Tehran, Iran

2 Tarbiat Modares University; Tehran, Iran

Abstract

This study aimed to develop IoT-based machine learning algorithms care and improvement while detecting and predicting real-time epidemics.
The target disease is COVID-19 due to its importance and epidemic.
The research method is based on design science. The research approach is forward-looking, so the mechanism of disease transmission and its effective characteristics enable us to make predictions about the disease and thus design disease control strategies and health care.
The research was carried out in a seven-step process. IoT features were extracted in the present study with experts' opinions. The features obtained in the experiment of two different algorithms, "k nearest neighbor" and "decision tree," were created on the data to determine the best model.
After selecting the best depth validation of the model were performed by confusion matrix analysis.
The results of running k-nearest neighborhood and Decision Tree algorithms for the prediction of COVID-19 indicated an accuracy of > 98%. Higher sensitivity (99%) was obtained in the Decision Tree algorithm, which is very important diagnosing COVID-19 and indicates the minimum number of false negatives in the test results.

Keywords

Main Subjects


فهرست منابع
اسدآبادی، روح اله، شهرام توفیقی، حبیب‌الله قائدامینی، فاطمه عزیزیان، احمد عامریون، و محمد شکری. 1391. بررسی پراکندگی برخی بیماری‌های واگیردار براساس سامانه اطلاعات جغرافیایی (GIS) در استان چهارمحال و بختیاری. مجله طب نظامی 1(2): 113-123.
اولیاء، پرویز، فرح‌السادات بحرینی، منیر افتخاری، مصطفی قانع، و آمنه فروزان. 1390. تعیین اولویت‌های تحقیقاتی سلامت در ایران. مجله دانشکده بهدات و انستیتو تحقیقات بهداشتی 9 (2): 9-20.
بخشی، اشرف، معصومه اصلانی، و پریسا عابدی. 1400. مروری بر چالش‌های نمونه‌گیری و تشخیص آزمایشگاهی بیماری کووید-19. مطالعات علوم پزشکی 32 (3): 157-178.
حسن‌نژاد دیوکلائی، سامره. 1396. بررسی سیستم‌های دینامیکی بعضی مدل‌های ریاضی در بیماری‌های واگیردار و تجزیه و تحلیل آنها. کنگره بین المللی بهبود مدیریت و نظام آموزشی ایران. تهران.  1-27.
روشن، سیدعلیقلی، نورمحمد یعقوبی، و امیررضا مومنی. 1400. کاربست هوش مصنوعی در بخش دولتی. فصلنامه علوم مدیریت ایران 16 (1):  117-145.
رهنما، محمدرحیم، و مهدی بازرگان. 1399. مدل‌سازی الگوی پخش فضایی ویروس کووید-19 در مناطق روستایی و شهری ایران. اقتصاد فضا و توسعه روستایی 33 (3): 25-48.
عبادی، عباس. 1400. کمتر از یک پرستار به‌ازای هر تخت بیمارستانی. تهران: خبرگزاری تسنیم.
عجمی، سیما، سعیده کتابی، سکینه سقائیان‌نژاد اصفهانی، و آسیه حیدری. 1390. الزامات و حوزه‌های مرتبط با ارزیابی آمادگی سازمان‌ها برای پیاده‌سازی پرونده الکترونیک سلامت. مدیریت سلامت 14 (46): 71-81.
کاشانی، اشرف، معصومه اصلانی‌مهر، و پریسا عابدی ایلخچی. 1400. مروری بر چالش‌های نمونه‌گیری و تشخیص آزمایشگاهی بیماری کووید-19. مجله مطالعات علوم پزشکی 23 (3): 156-174.
کلاهدوز، مهسا، علیرضا طبیب‌زاده، مهسا طاهری‌زاده، آزاده لعلی، محمودرضا خوانساری، حسین اژدرکش، و محمدهادی کربلایی‌نیا. 1399. مروری بر کروناویروس 19: کنترل و پیشگیری. مجله علوم پزشکی رازی 27 (5): 98-108.
گل‌پیرا، رضا، مرجان قطبی، فاطمه بهتاج، مهرنوش پروان، فریبا لطفی گلمیشه، و اکرم واحدی، اکرم. 1399. شناسنامه شاخص‌های آمار و اطلاعات بیمارستانی. تهران: معاونت درمان وزارت بهداشت، درمان و آموزش پزشکی.
نعمت‌شاهی، محبوبه، حسین ابراهیمی‌پور، زهرا کیوانلو، محمد خواجه دلویی، و عقیل کیخسروی. 1399. بررسی بودجه بخش بهداشت و درمان طی برنامه‌های اول تا پنجم توسعه اجتماعی اقتصادی کشور. راهبردهای مدیریت در نظام سلامت. 5 (2): 85-87.
References:
 
Abbott P. A., & S. Barbosa. 2019. Using Information Technology and Social Mobilization to Combat Disease. Michigan: University of Michigan. 1-3
Acarali, D., M. Rajarajan, N, Komninos, & B. Zarpelão. 2019. Modelling the Spread of Botnet Malware in IoT-Based Wireless Sensor Networks. Security and Communication Networks 3: 1-14.
Addante, F., F. Gaetani, L.  Patrono, D. Sancarlo, I. Sergi, & G. Vergari. 2019. An Innovative AAL System Based on IoT Technologies for Patients with Sarcopenia. Sensors 19 (22): 1-18.
Adriana, Tomic I. T.-H. 2019. SIMON, an Automated Machine Learning System, Reveals Immune Signatures of Influenza Vaccine Responses. Journal of Immunology 203 (3): 1-202.
Agrebi S, Larbi A. 2020. Use of artificial intelligence in infectious diseases. Artificial Intelligence in Precision Health, Singapore, Technopark El Gazala, 415-532.
Alfred R., & J. H. Obit. 2021. The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review. Machineintelligencespace 7 (6): 1-12.
Altintas, Z. 2018. Biosensors and Nanotechnology: Applications in Health Care Diagnostics. Berlin: John Wiley & Sons Inc. 150-230.
Astill, J. , R. Dara, E. Fraser,  & S. Shayan . 2018. Detecting and predicting emerging disease in poultry with the implementation of new technologies and big data. Frontiers in Veterinary Science 5 (12): 1-43.
Bagal, D. K., A. Rath, A. Barua, & D. Patnaik. 2020. Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods. Chaos, Solitons and Fractals. 140 (4): 1-13.
Bellini, E., F. Bagnoli, A. Ganin, & I. Linkov. 2019. Cyber Resilience in IoT network: Methodology and example of assessment through epidemic spreading approach. IEEE World Congress on Services. 72-78. Milan.
Bloom, D. E., & D. Cadarette. 2019. Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Frontiers in Immunology 10 (549): 1-12.
Chakraborty, C., A. Banerjee, L. Garg & C. Rodrigues. 2021. Internet of Medical Things for Smart Healthcare. Singapore: Springer.  241-263.
Chamola, V., V. Hassija, V. Gupta, & A. Guizani. 2020. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, COVID-19 Pandemic and the Role of IoT. Managing its Impact. IEEE Access. 1-35.
Cheng, M. P., J. Papenburg, M. Desjardins, S. Kanjilal, C. Quach, M. Libman, & C. Yansouni. 2020. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review . Ann Intern Med. 172 (11): 724-734.
Christaki, E. 2015. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 6 (6): 558-565.
Cyient, I. 2021. The Medical Internet of Things (MIoT). London: Cyient, Inc.
Dadgari, A., S. Mirrezaei, S. Talebi, Y. Gheshlaghi & M. Rohani-Rasaf. 2021. Investigating Some Risk Factors Related to the COVID-19 Pandemic in the Middle-aged and Elderly. Iranian Journal of Ageing. 16 (1): 102-112.
Daszak,  P. ,  Olival  K.  , Li  H. 2020. A strategy to prevent future epidemics similar to the 2019-nCoV outbreak. Biosafety and Health 2 (1): 6-8.
Diao, B., K. Wen, J. Chen, Y. Liu, Z. Yuan, C. Han, . . .  & Y. Wu. 2021. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv 13 (1349): 1-13.
Duangchaemkarn, K., V. Chaovatut, P. Wiwatanadate, & E. Boonchieng. 2017. Symptom-based data preprocessing for the detection of disease outbreak. IEEE Engineering in Medicine and Biology Society Conference 2614-2617.  Jeju, Korea.
Durán-Vega, L. A., Pedro C. Santana-Mancilla, Raymundo Buenrostro-Mariscal, J. Contreras-Castillo, L. Anido-Rifón, M. García-Ruiz, & F. Estrada-González. 2019. An IoT System for Remote Health Monitoring in Elderly Adults through a Wearable Device and Elderly Adults through a Wearable Device and... Geriatrics 4 (2): 1-27.
Edwards, P. 2017. Epidemics: past, present and future –what are the risks? ReCent medical news  ? : 1-4.
Fangge, Li, P. L. 2011. Arma model for predicting the number of new outbreaks of newcastle disease during the month. IEEE International Conference on Computer Science and Automation Engineering. 660-663.  Shanghai.
Farrahi, K., R. Emonet, & M. Cebrian. 2015. Predicting a Community’s Flu Dynamics with Mobile Phone Data. HAL. 9 (5): 1-9.
Halamka, J. A. 2006. The security implications of VeriChip cloning. J Am Med Inform Assoc 13 (6): 601-607.
Hamad, A. A. 2018. Modelling epidemic spreading phenomena processes on networks. Netherlands: Delft University of Technology.1-20
Hamzah, F., C. H. Lau, H. Nazri, D. Vincent, G. Lee, C. L. Tan, & N. E. Salunga. 2020. CoronaTracker: World-wide COVID-19 Outbreak Data Analysis and Prediction. Bull World Health Organ 55 (3): 1-32.
Husin, N. M. 2012. A hybrid model using genetic algorithm and neural network for predicting Dengue outbreak. Conference on Data Mining and Optimization.  27-23.  Langkawi.
Kacprzyk, J. 2018. Advances in Intelligent Systems and Computing. Singapore: Springer Nature Singapore . 11-45
Lee, E., C. Choi, M. Lee, K. Oh, & P. Kim. 2016. An approach for predicting disease outbreaks using fuzzy inference among physiological variable. 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. 1-4.  Fukuoka.
Li, Q. 2018. Spatiotemporal responses of Dengue fever transmission to the road network in an urban area. Acta Trop 183 (1): 8-13.
Luz, C. M., J. Vollmer, M. W. Decruyenaere, C. Nijsten, C. Glasner & B. Sinha. 2020. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clinical Microbiology and Infection 26 (10): 1291-1310.
McDonald, J. H. 2015. Biological Statistics. Marylandaltimore, Maryland: Sparky house publishing.54-103.
Phua, J., M. Farug, A. Kulkarni & I. Redjeki. 2020. Critical Care Bed Capacity in Asian Countries and Regions. Critical Care Medicine 48 (5): 1-10.
Rahman, M. S., N. Peeri, N. Shrestha, R. Zaki, U. Haque, & S. Hafizah. 2020. Defending against the Novel Coronavirus (COVID-19) outbreak: How can the Internet of Things (IoT) help to save the world? Health Policy and Technology 9 (2): 136-138.
Ramos, Á. M., B. Ivorra, & B. M. López. 2018. Mathematical models for introduction, spread and early detection on infectious diseases in veterinary epidemiology. Madrid: universidad complutense de madrid.120-152
Roth, J. A., &  B. M. 2018. Introduction to machine learning in digital healthcare epidemiology. Infect Control Hosp Epidemiol 39 (12): 1557-1562.
Singh,  R. P.,  M. Javaid, A.  Haleem, & R. Suman.  2020 . Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14 (2): 521-524.
Song, Y., J. Jiang, X. Wang, D. Yang, & C. Bai. 2020. Prospect and application of Internet of Things technology for prevention of SARIs. Clinical eHealth 3 (1): 1-4.
Stehman, S. 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment. 62 (1) : 77-89.
 
Ting, D. S. , l. Carin, v. Dzau, & T. Wong. 2020. Digital technology and COVID-19. Nature Medicine. 26 (2): 459-461.
Tuyishimire,  E, & B. Bagula. 2020. Modelling and analysis of interference diffusion in the internet of things: an epidemic model. 2020 Conference on Information. Communications Technology and Society (ICTAS)  ?: 1-6.
Venkatramanan, S., A. Sadilek, A. Fadikar, C. Barrett, M. Biggerstaff, J. Chen,  . . . M. Marathe. 2021. Forecasting influenza activity using machine-learned mobility map. NATURE COMMUNICATIONS ? : 1-12.
Verelst, F., L. Willem, & P. Beutels. 2016. Behavioural change models for infectious disease transmission: a systematic review. The Royal Society ?: 1-20.
 
Vijayakumar, V. 2019. Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Comput. Hum. Behav. 100 (3):275-285.
WHO. 2018. Managing epidemics: key facts about major deadly diseases. Luxembourg: World Health Organization.
Wilson, K, & J. Brownstein. 2008. Early detection of disease outbreaks using the Internet. National Library of Medicine 180 (8): 829–831.
Yang, W., J. Zhang & R. Ma. 2020. The Prediction of Infectious Diseases: A Bibliometric Analysis. International Journal of Environmental Research and Public Health  17 (17): 1-19.