بررسی تحولات پژوهش‌های حوزه ارزیابی کیفیت داده‌ها و اطلاعات در نظام‌های اطلاعاتی از سال 2000 تا نیمۀ نخست 2015

نویسندگان

1 دانشگاه علوم پزشکی

2 دانشگاه شهید چمران

3 دانشگاه پیام نور

چکیده

یافتن شکاف‏‌های پژوهشی در حوزه موضوعی کیفیت داده‌‏ها و اطلاعات و نیز یافتن راهکارهای ارتقا کیفی داده‌ها در نظام‏‌های اطلاعاتی، پژوهشگران و متخصصین اطلاعات را جهت اجرای پژوهش‏‌های کاربردی در این زمینه یاری می‏‌نماید. براین‌‏اساس، پژوهش حاضر جهت دسته‏‌بندی و تحلیل محتوایی پژوهش‌‏های موجود در داخل و خارج از کشور در این زمینه، به روش نظام‏‌مند تحلیل محتوا و در 2 بخش اصلی انجام شده است. بخش اول شامل جستجوی پژوهش‏‌ها در حوزه ارزیابی کیفیت داده یا اطلاعات می‏‌باشد. در ادامه، بخش دوم به بررسی، ارزیابی و تجزیه و تحلیل پژوهش‌‏ها پرداخته است. یافته‏‌ها نشان داد که بر اساس معیارهای ورودی، در بخش مطالعات خارجی از بین 922 مطالعه بررسی شده 65 پژوهش و در بخش مطالعات داخلی، از بین 516 مطالعه 24 پژوهش، به بررسی، توصیف و تبیین ابعاد کیفیت داده یا اطلاعات پرداخته‌‏اند. از این پژوهش‏‌ها، 25 مورد مدل، روش یا چارچوبی خاص جهت ارزیابی کیفیت داده یا اطلاعات ارائه کرده‏‌اند. به‏‌علاوه مشخص شد که در پژوهش‏‌های خارج از کشور 77 بعد از ابعاد کیفیت داده یا اطلاعات مورد بررسی قرار گرفته است. این درحالی است که در پژوهش‏‌های داخل تنها 27 بعد مورد توجه قرار گرفته است. به علاوه مشخص شد که در نظام‏‌های اطلاعاتی، بعد کامل بودن، بیشترین تعداد پژوهش را در مطالعات داخل و خارج به خود اختصاص داده‏ است. در کل، بررسی مطالعات از سال 2000 تاکنون نشان داد که در حوزه ارزیابی جامع کیفیت داده یا اطلاعات و نیز مدل‌‏ها یا روش‌‏هایی بدین منظور، پژوهش‏‌های اندکی انجام شده است و هنوز شکاف‏‌های زیادی در این زمینه مخصوصاً در زمینه نظام‌‏های اطلاعاتی زبان فارسی وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Developments of research in evaluation of data and information quality in information systems since the year 2000

نویسندگان [English]

  • Alireza Rahimi 1
  • Hossein Farajpahlou 2
  • Farideh Osareh 2
  • Mehri Shahbazi 3
چکیده [English]

Finding research gaps in the area of Data and Information Quality and finding ways to enhance the quality of data and information in information systems would help researchers and experts to undertake applied studies in this area. On this basis, the present research will try to the present research will try to categories of content analysis of existing research in this field at Iran and abroad. We use Systematic review method in two main section. First, Searche about evaluation of data or information quality. In the following, second section, we evaluated and analyzed research. Results of the study revealed that according to the input criteria, in the foreign section, 65 out of 922 items, and in the local section, 24 out of 516 studies described the different aspects of the quality of data and/or information. 24 of these items focused on developing models or specific frameworks. Moreover, it was clear that 77 quality dimensions were identified and examined in the articles of the foreign section. However, only 27 dimensions were discussed in the local section. Also, findings revealed that in the information systems, Completeness dimension was the focused subject of most research papers locally and internationally. Research from 2000 til now show that there is some gap in research about data or information quality assesment, especially in persian.

کلیدواژه‌ها [English]

  • Data quality
  • information quality
  • information systems
Alkhattabi, Mona, Daniel Neagu, & Andrea Cullen. 2011. Assessing information quality of e-learning systems: a web mining approach. Computers in Human Behavior 27 (2): 862-873. Bardaki, Cleopatra, Panos Kourouthanassis, & Katerina Pramatari. 2011. Modeling the information completeness of object tracking systems. The Journal of Strategic Information Systems 20 (3): 268-282. Bergvall, Tomas, G. Niklas Nore´n, & Marie Lindquist. 2014. vigiGrade: A Tool to Identify Well-Documented Individual Case Reports and Highlight Systematic Data Quality Issues. Drug Safety 37: 65–77. Calero, Coral, Angélica Caro, & Mario Piattini. 2008. An Applicable Data Quality Model for Web Portal Data Consumers. World Wide Web 11: 465–484. Caro, Angelica, Coral Calero, Ismael Caballero, & Mario Piattini. 2008. A proposal for a set of attributes relevant for Web portal data quality. Software Quality Journal 16 :513–542. Chen, Chien Chin, Tseng You-De. 2011. Quality evaluation of product reviews using an information quality framework. Decision Support Systems 50 (4): 755- 768. Chen, Chung-Yang. 2002. A framework for optimizing data quality given limited resources. Doctor of Philosophy. Arizona State University. Chen, Hong. 2009. Modeling information quality in agent-based e-commerce systems. Masters. University of Ottawa. Chun Chung Joshua, Pun. 2006. On the use of the appropriateness and cohesiveness Web data quality dimensions for finding high quality Web pages. Doctor of Philosophy. Hong Kong University of Science and Technology. De Sordi, JoséOsvaldo, Manuel Meireles, & MarciaCarvalho de Azevedo. 2014. Information selection by managers: priorities and values attributed to the dimensions of information. Online Information Review 38 (5): 661- 679. Eppler, Martin J., & Dörte Wittig. 2000. Conceptualizing Information Quality: A Review of Information Quality Frameworks from the Last Ten Years. Paper presented at the Conference on Information Quality. from https://pdfs.semanticscholar.org/0cbd/e8f8a62e5572031370fa6b2518b7dfedd678.pdf (accessed Oct. 2014). Guerra-García, César, Ismael Caballero, & Mario Piattini. 2013. Capturing data quality requirements for web applications by means of DQ_WebRE. Information Systems Frontiers 15: 433–445. Haug, Anders, Jan Stentoft Arlbjørn, & Anne pedersen. 2009. A classification model of ERP system data quality. Industrial Management & Data Systems 109 (8): 1053-1069. Heinrich, Bernd, and Mathias Klier. 2015. Metric-based data quality assessment — Developing and evaluating a probability-based currency metric. Decision Support Systems 72: 82-96. Herrera-Viedma, Enrique, Eduardo Peis, José M. Morales-del-Castillo, Sergio Alonso, Karina Anaya. 2007. A fuzzy linguistic model to evaluate the quality of Web sites that store XML documents. International Journal of Approximate Reasoning 46: 226-253. Jeong, Miyoung & Carolyn U. Lambert. 2001. Adaptation of an information quality framework to measure customers’ behavioral intentions to use lodging Web sites. International Journal of Hospitality Management 20 (2): 129-146. Lee, Yang W., Diane M. Strong, Beverly K. Kahn, & Richard Y Wang. 2002. AIMQ: a methodology for information quality assessment. Information & Management 40 (2): 133-146. Leite, Patrícia, Joaquim Gonçalves, Paulo Teixeira, & Álvaro Rocha. 2015. A model for the evaluation of data quality in health unit websites. Health Informatics Journal 1-17 https://www.researchgate.net/publication (accessed June 25, 2015). Liaw, S-T, J. Taggart, H. Yu, & A. Rahimi. 2013. Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature. International journal of medical informatics 82 (1): 10-24. _____. 2014. Electronic health records and disease registries to support integrated care in a health neighbourhood: an ontology-based methodology. Paper presented at the AMIA Summits on Translational Science Proceedings, Washington, DC. Martinez, Alexandra. 2007. BIODQ: A model for data quality estimation and management in biological databases. Doctor of Philosophy. University Of Florida. Michnik, Jerzy, & Mei-Chen Lo. 2009. The assessment of the information quality with the aid of multiple criteria analysis. European Journal of Operational Research 195 (3): 850-856. Moges, Helen-Tadesse, Karel Dejaeger, Wilfried Lemahieu, Bart Baesens. 2013. A multidimensional analysis of data quality for credit risk management: New insights and challenges. Information & Management 50 (1): 43- 58. Parssian, Amir Homayoun. 2003. Assessing information quality for relational databases. Doctor of Philosophy. University of Texas and Dallas. Rahimi, A, S-T Liaw, P. Ray, J. Taggart, & H. Yu. 2014a. Ontological specification of quality of chronic disease data in EHRs to support decision analytics: a realist review. Decision Analytics 1 (5): 1-31. _____. 2014b. Development of a Methodological Approach for Data Quality Ontology in Diabetes Management. Int J E-Health Med Commun 5 (3): 58-77. _____. 2014c. Validating an ontology-based algorithm to identify patients with Type 2 Diabetes Mellitus in Electronic Health Records. International journal of medical informatics 83 (10): 768-778. Ratnaningtyas, Dyah Diwasasri, & Kridanto Surendro. 2013. Information Quality Improvement Model on Hospital Information System Using Six Sigma. Procedia Technology 9: 1166-1172. Scannapieco, Monica, Antonino Virgillito, Carlo Marchetti, Massimo Mecella, & Roberto Baldoni. 2004. The DaQuinCIS architecture: a platform for exchanging and improving data quality in cooperative information system. Information Systems Frontiers 29 (7): 551-582. Shannon, Claude. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27: 379–423, 623–656. Retrieved from: http://worrydream.com/refs/Shannon%2020A%20Mathematical%20Theory%20of%20Communication.pdf (accessed Oct. 24, 2016)‌. Stvilia, Besiki. 2006. Measuring information quality. Doctor of Philosophy. University of Illinois at Urbana-Champaign. Togt, Remko van der, Piet. J. M. Bakker, & Monique W. M. Jaspers. 2011. A framework for performance and data quality assessment of Radio Frequency IDentification (RFID) systems in health care settings. Journal of Biomedical Informatics 44 (2): 372-383. Wang, Richard Y. 1998. A product perspective on total data qualtiy. Communications of the ACM 41 (2): 58- 65. Xiaojuan, Ban, Ning Shurong, Xu Zhaolin, & Cheng Peng. 2008. Novel method for the evaluation of data quality based on fuzzy control. Journal of Systems Engineering and Electronics 19 (3): 606-610. Xiaosong, Zhao, He Zhen, Zhang Meng, Yu Dainuan, & Zhang Ting. 2008. The application study of ERP data quality assessment and improvement methodology. IEEE 1036-1039.