Altendeitering, M. 2021. Mining Data Quality Rules for Data Migrations: A Case Study on Material Master Data. Margaria, Steffen (eds) Leveraging Applications of Formal Methods, Verification and Validation. ISoLA 2021. Lecture Notes in Computer Science, vol 13036. Cham: Springer. https://doi.org/10.1007/978-3-030-89159-6_12
Azeroual, O., G., M. Saake, Abuosba and J. Schöpfel. 2020. Data Quality as a Critical Success Factor for User Acceptance of Research Information Systems. Data 5 (2): 35.
Brin, S., R. Motwani, J. D. Ullman, and S. Tsur. 1997. Dynamic itemset counting and implication rules for market basket data. ACMSIGMOD Conference, Tucson, Arizona, USA, pp. 255–264.
Chien, C. F., W. C. Wang and J. Cheng. 2007. Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications 33 (1): 192–198.
Cheung, D. W., J. Han, V. T. Ng, and C. Y. Wong. 1996. Maintenance of discovered association rules in large databases: an incremental updating approach. IEEE International Conference on Data Engineering, pp. (106–114). Washington, DC.
Cheeseman, P., and J. Stutz. 1996. Bayesian classification (AutoClass): theory and results. U.M. Fayyad, G. Piatetsky-Shaprio, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining . pp (153–180). Menlo Park: American association for Artificial Intelligence.
_____. 2013b. Holistic data cleaning: Putting violations into context. IEEE International Conference on Data Engineering, pp. 458–469. Brisbane, Australia.
Ershadi, M. J., R. Aiasi, and S. Kazemi. 2018. Root cause analysis in quality problem solving of research information systems: a case study. International Journal of Productivity and Quality Management 24 (2): 28.
Falge, C., B. Otto, and H. Österle. 2012. Data quality requirements of collaborative business processes. 45th Hawaii International Conference on System Sciences. pp. (4316-4325). IEEE Hawaii.
Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996. The KDD process for extracting useful knowledge from volumes of data. Communication of ACM, 39 (11): 27–34.
Fox, V., R. Aggarwal, H. Wheltonو and O. Johnson. 2018 A Data Quality Framework for Process Mining of Electronic Health Record Data, 2018 IEEE International Conference on Healthcare Informatics (ICHI), 2018, pp. (12-21), doi: 10.1109/ICHI.2018.00009. New York, NY, USA.
He ,Y., X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri. 2018. Transform-data-by-example (tde): an extensible search engine for data transformations.
Proceedings of the VLDB Endowment, 11 (10): 1165–1177.
Hellerstein, J. M. 2008. Quantitative data cleaning for large databases. United Nations Economic Commission for Europe (UNECE).
Hu, C., and S. Su. 2004. Hierarchical clustering methods for semiconductor manufacturing data. Proceedings of the IEEE international conference onnetworking, sensing and control, Taiwan.
Schelter S., D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger. 2018
. Automating large-scale data quality verification. Proc.
Proceedings of the VLDB Endowment 11 (12): 1781–1794.
Schöpfel, J., O. Azeroual, and G. Saake. 2019. Implementation and user acceptance of research information systems: An empirical survey of German universities and research organisations. Data Technologies and Applications. 2019, 54: 1–15.
Shrivastava, S., D. Patel, A. Bhamidipaty, W. M. Gifford, S. A. Siegel, V. S. Ganapavarapu, and J. R. Kalagnanam. 2019. Dqa: Scalable, automated and interactive data quality advisor. IEEE International Conference on Big Data (Big Data), pp. 2913–2922.
Skinner, K. R., D. C. Montgomery, G. C. Runger, J. W. Fowler, D. R. McCarville, T. R. Rhoads, et al. 2002. Multivariate statistical methods for modeling and analysis of wafer probe test data. IEEE Transactions on Semiconductor Manufacturing 15 (4): 523–530.
Weiss, S. M., and C. A. Kulikowski. 1991. Computer systems that learn: classification and prediction methods from statistics, neural nets. Machine learning and expert systems. Los Altos, CA: Morgan Kaufman.
Zhang, T., R. Ramakrishnan, and M. Livny. 1996. BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD International Conference Management of Data, pp. (103–114), Montreal, Canada.