مطالعه‌ی رفتار اطلاع‌جویی کاربران از طریق ثبت امواج مغزی با کمک الکتروآنسفالوگرافی: یک مرور نظام‌مند

نویسندگان

1 گروه علم اطلاعات و دانش‌شناسی دانشگاه شیراز، شیراز، ایران

2 گروه علم اطلاعات و دانش شناسی دانشگاه شیراز، شیراز، ایران

3 گروه علوم اعصاب، دانشکده علوم و فناوری‌های نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

مطالعه­‌ی رفتارکاربر بر اساس رویدادهایی که در مغز انسان و در مراحل مختلف رفتار اطلاع‌­جویی رخ می‌­دهد؛ علی­رغم نوپایی روش‌­شناختی، مورد استقبال پژوهشگران حوزه‌­ی اطلاعات واقع شده است. در پژوهش حاضر تلاش شده است تا با روش مرور نظام‌­مند، وضعیت پژوهش­‌های انجام گرفته در عرصه­‌ی رفتار اطلاع­‌جویی از طریق مطالعه­‌ی امواج مغزی بررسی شود و با شناسایی خلاء­های پژوهشی، پیشنهادهایی برای پژوهش‌­های پیش­رو ارائه گردد. در این راستا، از ساختار مرور نظام‌­مند کیتچنهام و چارترز (Kitchenham & Charters 2007) استفاده شده است. با اجرای جستجو در پایگاه‌­های اطلاعاتی علمی به زبان انگلیسی و فارسی، در نهایت 22 منبع انگلیسی و یک منبع فارسی در بازه­ی زمانی سال‌­های 2007 تا 2020 یافت شد. در بررسی متون، برخی از مفاهیمی که فصل مشترک پژوهش‌­ها بودند، گروه­‌بندی شده و مبنای دسته­‌بندی موضوعی قرارگرفتند. با مرور پژوهش‌­ها، مشخص شد که بررسی «وضعیت ذهنی کاربر» (10 پژوهش) و «فعالیت امواج مغزی در مراحل مختلف رفتار اطلاع­‌جویی» (12 پژوهش)، رویکردهای غالب موضوعی می­‌باشند. دو مؤلفه­ی «بار شناختی» و «سبک شناختی» به عنوان عوامل تاثیرگذار بر وضعیت کاربر شناسایی شدند. «نوع رسانه‌­ی جستجو»، «قالب نمایش اطلاعات» و «شیوه­ی خواندن متن» به عنوان سه عامل تاثیرگذار بر ایجاد بار شناختی در هنگام جستجو و پردازش اطلاعات تعیین شدند. ازآنجایی­که روش مورد بررسی در این پژوهش، امواج مغزی بود؛ با مطالعه­‌ی پژوهش‌­ها مشخص شد که به دلیل اهمیت حرکات چشم در زمان خواندن، و نقش جدایی ناپذیر آن در فرآیند جستجوی اطلاعات، داده­‌های چشمی نیز دارای اهمیت می­‌باشند. تحلیل امواج مغزی و اتساع مردمک چشم، از مهم­ترین سنجه­‌های مورد استفاده در مطالعه­‌ی وضعیت کاربر هنگام جستجو، و «امواج آلفا و تتا» به عنوان شاخص اندازه‌­گیری سطح بار شناختی در فرآیند اطلاع جویی شناخته شدند. همچنین، داده­‌های حاصل از حرکات چشم در هنگام رفتارهای جستجو، و به موازات آن میزان دشواری تکالیف که کاربر در حین جستجو احساس می­کند؛ با سبک شناختی کاربران دارای همبستگی بود و درنتیجه‌­ی آن، مشخص شد که انواع مختلفی از رفتارهای اطلاع­‌جویی قابل طبقه‌­بندی و شناسایی است. مراحلی که فعالیت مغزی کاربران در فرآیند اطلاع­‌جویی مورد مطالعه قرار گرفته اند؛ به ترتیب عبارت بودند از «کاوش و فرمول­بندی پرسش»، «فرمول­بندی دوباره پرسش و انتخاب آن»، «تصمیم‌­گیری و قضاوت درباره‌­ی ربط». نتایج پژوهش­‌ها نشان از تفاوت فعالیت نواحی مختلف مغزی، تغییر سطح اتساع مردمک چشم و تغییر در بسامد «امواج آلفا و بتا» در این سه مرحله از جستجو داشت. پیشنهادهای مطرح برای پژوهش‌­های آتی با کمک مطالعه­ی امواج مغزی و دستگاه الکتروآنسفالوگرافی، عبارت بودند از: بررسی رابطه همبستگی میان سبک شناختی با ویژگی­‌های مربوط به تکلیف و دانش زمینه­‌ای در فرآیند رفتار اطلاع جویی، توسعه­ی سامانه­‌های شخصی‌­سازی بازیابی اطلاعات با همکاری بیشتر میان متخصصان حوزه اطلاعات و علوم اعصاب، پژوهش در احساسات، خشم و خستگی هنگام رفتار اطلاع­جویی با رویکرد مطالعه­ی مغزی، استفاده از روش­‌های اقتصادی و ابزارهای قابل حمل برای کاهش هزینه­های پژوهشی، ایجاد زیرساخت‌هایی با هدف افزایش تعداد جامعه­ی آماری، و طراحی تکالیف استاندارد در زمینه­‌ی پژوهش‌­های مغزی. از خلاءهای پژوهشی مطرح شده، می­‌توان به نیاز به پژوهش بیشتر برای درک مفاهیم پیچیده­ای مانند ربط از طریق تحلیل امواج مغزی در فرآیند اطلاع­‌جویی، و مطالعه‌­ی احساسات کاربر با رویکردهای تلفیقی اشاره نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the users’ information-seeking behavior by recording brain waves activity with Electroencephalography method: A systematic Review

نویسندگان [English]

  • Elmira Khanlarkhani 1
  • Mahdieh Mirzabeigi 2
  • Hajar Sotudeh 1
  • Masoud Fazilat-Pour 1
  • Mohammad Nami 3
1
2
3
چکیده [English]

Despite the novelty in methodologies, User behavior study based on brain activity during information-seeking stages has become popular among information science researchers. This paper reviews scientific publications in which information-seeking behavior has been studied along with recorded brain activity to shed light on research status, challenges, and suggestions for future studies. Based on Kitchenham & Charters (2007) framework, a complete web search was performed in English and Persian scientific databases, and 22 publications in English were found as the final result, from 2007 to 2020. Review results demonstrate that exploring the user status (10 papers) and brain wave activity during information-seeking episodes (12 papers) were the most dominant subjective approaches in the field of user behavior studies. Cognitive load was found as an effective cognitive component on user status. With eye movement measurement and brain waves frequency study, 3 factors were found effective on cognitive load level generated during information searching and processing: searching media type, information representation, and text reading style. Brain wave activity and pupil dilation analysis were the most important measures in user status during search stages, and alpha and theta band waves were demonstrated as an index for cognitive load measurement during the information searching process. A correlation among eye data, search behavior, task complexity based on user experience, and cognitive style – as another effective factor on user status- led to results in different information searching behavior demonstrations. Also, 3 main stages were analyzed in the information-seeking process, based on brain wave activity: information exploring and query formulation, query reformulation and selection, relevance judgment, and decision making. Results showed a difference between brain activity areas, and differences in pupil dilation change level and alpha/beta frequency level during different search episodes. For future research, some suggestions were offered based on reviews. Finding relations between correlations among cognitive styles, task features, and domain knowledge during information searching process, personalized information retrieval improvement, more collaboration between information science and neurocognitive specialists, research in more user affective status like aggression and fatigue during the search process, using more economic methods and portable devices aiming to reduce research costs and expenses, facilitating larger sample studies and designing standard tasks were considered as a suggestion. Finally, some challenges were found based on reviewed studies. Some concepts like relevance feedback in information retrieval need more investigation. Also, it is necessary to investigate and explore user affections during the search process with multiple approaches.

کلیدواژه‌ها [English]

  • Information-seeking behavior
  • Brain waves
  • Electroencephalography (EEG)
  • cognitive components
  • Systematic review
اکبری، علی، محسن نوکاریزی، رضا رستمی، و علی مقیمی. 1398. واکاوی مؤلفه‌های شناختی در فراگرد رفتار اطلاع‌یابی درمانگران با استفاده از ابزارهای پژوهشی علوم عصب‌شناختی. پژوهشنامه پردازش و مدیریت اطلاعات ۳۵ (۲): ۳۲۳-۳۴۸.
 
Allegretti, Marco, Yashar Moshfeghi, Maria Hadjigeorgieva, Frank E. Pollick, Joemon, M. Jose, and Gabriella Pasi. 2015. "When relevance judgement is happening? An EEG-based study." In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 719-722. Santiago Chile.
Al-Samarraie, Hosam, Atef Eldenfria, Fahed Zaqout, and Melissa Lee Price. 2019. How reading in single-and multiple-column types influence our cognitive load: an EEG study. The Electronic Library 37 (4): 593-606.
Antonenko, Pavlo, Fred Paas, Roland Grabner, and Tamara Van Gog. 2010. Using electroencephalography to measure cognitive load. Educational Psychology Review 22 (4): 425-438.
Aula, Anne, Rehan M. Khan, and Zhiwei Guan. 2010. How does search behavior change as search becomes more difficult? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 35-44. Atlanta, Georgia. USA.
Barral, Oswald, and Giulio Jacucci. 2015. Applying physiological computing methods to study psychological, affective and motivational relevance. In International Workshop on Symbiotic Interaction, pp. 35-46. Cham: Springer.
Broder, A. 2002. A taxonomy of web search. ACM SIGIR Forum, 36 (2): 3–10.
Brumby, Duncan P., and Susan Zhuang. 2015. Visual grouping in menu interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4203-4206. 2015. Seoul, Republic of Korea.
Buscher, Georg, Jacek Gwizdka, Jaime Teevan, Nicholas J. Belkin, Ralf Bierig, Ludger van Elst, and Joemon Jose. 2009. "SIGIR 2009 workshop on understanding the user: logging and interpreting user interactions in information search and retrieval." In ACM SIGIR Forum, vol. 43, no. 2, pp. 57-62. NewYork, NY, USA: ACM.
Chizari, Sara. 2016. Exploring the role of culture in online searching behavior from cultural cognitive perspective: case study of American, Chinese and Iranian Graduate Students. IConference 2016 Proceedings. Philadelphia, Pennsylvania, USA.
Church, K., & B. Smyth. 2009. Understanding the intent behind mobile information needs. In Proceedings of the 14th International Confer- ence on Intelligent User Interfaces (pp. 247–256). NewYork, NY: ACM.
Church, K., M. Cherubini, & N. Oliver. 2014. A large-scale study of daily information needs captured in situ. ACM Transactions on Computer-Human Interaction 21 (2) 10:1–10:46.
Cole, Michael J., Jacek Gwizdka, Liu Chang and J. Belkin Nicholas. 2011a. Dynamic assessment of information acquisition effort during interactive search. Proceedings of the American Society for Information Science and Technology 4 (8) 1: 1-10.
Cole, Michael J., Jacek Gwizdka, Liu Chang, Ralf Bierig, Nicholas J. Belkin, and Xiangmin Zhang. 2011b. Task and user effects on reading patterns in information search. Interacting with Computers 23 (4): 346-362.
Debue, Nicolas, Cécile Van De Leemput, Anish Pradhan, and Robert Atkinson. 2018. Comparative Study of Laptops and Touch-Screen PCs for Searching on the Web. In International Conference on Engineering Psychology and Cognitive Ergonomics, pp. 403-418. Cham: Springer.
Dimoka, Angelika, Paul A. Pavlou, and Fred D. Davis. 2011. Research commentary—NeuroIS: The potential of cognitive neuroscience for information systems research. Information Systems Research 22 (4): 687-702.
Eugster, Manuel JA, Tuukka Ruotsalo, Michiel M. Spapé, Ilkka Kosunen, Oswald Barral, Niklas Ravaja, Giulio Jacucci, and Samuel Kaski. 2014. Predicting term-relevance from brain signals (Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval). pp: 425-434. NewYork, NY, United Satates.
Eugster, Manuel JA, Tuukka Ruotsalo, Michiel M. Spapé, Oswald Barral, Niklas Ravaja, Giulio Jacucci, and Samuel Kaski. 2016. Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals. Scientific Reports 6: 38580.
Ferreras-Fernández, Tránsito, Helena Martín-Rodero, Francisco J. García-Peñalvo, and José A. Merlo-Vega. 2016. The systematic review of literature in LIS: an approach. In Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 291-296. NewYork, NY, United Satates
Frey, Aline, Gelu Ionescu, Benoit Lemaire, Francisco López-Orozco, Thierry Baccino, and Anne Guérin-Dugué. 2013. Decision-making in information seeking on texts: an eye-fixation-related potentials investigation. Frontiers in systems neuroscience 7: 39.
Gevins, Alan, and Michael E. Smith. "Neurophysiological measures of cognitive workload during human-computer interaction. 2003. Theoretical Issues in Ergonomics Science 4 (1-2): 113-131.
González‐Ibáñez, Roberto, María Escobar‐Macaya, and Manuel Manriquez. 2016. Using low‐cost electroencephalography (EEG) sensor to identify perceived relevance on web search. Proceedings of the Association for Information Science and Technology 53 (1): 1-5.
Gwizdka, Jacek, and Javed Mostafa. 2016. NeuroIR 2015: SIGIR 2015 workshop on neuro-physiological methods in IR research." In Acm sigir forum, vol. 49, no. 2, pp. 83-88. NewYork, NY, USA: ACM, 2016.
_____. 2017. NeuroIIR: Challenges in bringing neuroscience to research in human-information interaction. In Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, pp. 437-438. 2017. Oslo, Norway.
Gwizdka, Jacek, and Michael J. Cole. 2011. Inferring cognitive states from multimodal measures in information science. In ICMI 2011 Workshop on Inferring Cognitive and Emotional States from Multimodal Measures (ICMI’2011 MMCogEmS) (Alicante:). Alicante, Spain.
Gwizdka, Jacek, Javed Mostafa, Yashar Moshfeghi, Ofer Bergman, and Frank E. Pollick. 2013. Applications of neuroimaging in information science: Challenges and opportunities. Proceedings of the American Society for Information Science and Technology 50 (1): 1-4.
Gwizdka, Jacek, Joemon Jose, Javed Mostafa, and Max Wilson. 2015. NeuroIR 2015: Neuro-Physiological Methods in IR Research. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1151-1153. NewYork, NY, United Satates
Gwizdka, Jacek, Rahilsadat Hosseini, Michael Cole, and Shouyi Wang. 2017. Temporal dynamics of eye‐tracking and EEG during reading and relevance decisions. Journal of the Association for Information Science and Technology 68 (10): 2299-2312.
Gwizdka, Jacek, Yan Zhang, and Andrew Dillon. 2019. Using the eye-tracking method to study consumer online health information search behaviour. Aslib Journal of Information Management 71 (6): 739-754. 
Gwizdka, Jacek, Yashar Moshfeghi, and Max L. Wilson. 2019. Introduction to the special issue on neuro-information science. J. Assoc. Inf. Sci. Technol. 70 (9): 911-916.
Gwizdka, Jacek. 2009. Assessing cognitive load on web search tasks. arXiv preprint arXiv: 1001.1685.
Gwizdka, Jacek. 2008. Cognitive Load and Web Search Tasks. In Workshop on Cognition and the Web, Information Processing, Comprehension, and Learning, Granada, Spain, pp. 83-86.
Gwizdka, Jacek. 2010. Distribution of cognitive load in web search. Journal of the American Society for Information Science and Technology 61 (11): 2167-2187.
Gwizdka, Jacek. 2018. Inferring web page relevance using pupillometry and single channel EEG. In Information Systems and Neuroscience, pp. 175-183. Springer, Cham: Springer.
Gwizdka, Jacek. 2010. Using Stroop task to assess cognitive load. In Proceedings of the 28th Annual European Conference on Cognitive Ergonomics, pp. 219-222. NewYork, NY, United Satates,
Haneefa, K. Mohamed, and K. P. Rahila. 2017. Influence of Cognitive Styles on Web Search Pattern: A Study among Students of Universities in Kerala. Journal of Knowledge & Communication Management 7 (1): 24-39.
Hendahewa, Chathra. 2014. Strategy in action: analyzing online search behavior bymining search strategies. In Proceedings of the 7th ACM international conference on Web search and data mining, pp. 649-654. NewYork, NY, United Satates,
Ingwersen, Peter. 1996. Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory. Journal of documentation 52 (1): 3-50.
Jacucci, Giulio, Oswald Barral, Pedram Daee, Markus Wenzel, Baris Serim, Tuukka Ruotsalo, Patrik Pluchino et al. 2019. Integrating neurophysiologic relevance feedback in intent modeling for information retrieval. Journal of the Association for Information Science and Technology 70 (9): 917-930.
Jansen, B.J., A. Spink, & T. Saracevic. 2000. Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing & Management 36 (2): 207–227.
Jiang, Jiepu, Daqing He, and James Allan. 2014. Searching, browsing, and clicking in a search session: changes in user behavior by task and over time. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pp. 607-616. Gold Coast Queensland, Australia,
Jimenez-Molina, Angel, Cristian Retamal, and Hernan Lira. 2018. Using psychophysiological sensors to assess mental workload during web browsing. Sensors 18 (2): 458.
Kangassalo, Lauri, Michiel Spapé, Giulio Jacucci, and Tuukka Ruotsalo. 2019. Why do users issue good queries? Neural correlates of term specificity. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 375-384. Paris, France.
Keele, Staffs. 2007. Guidelines for performing systematic literature reviews in software engineering. Vol. 5. Technical report, Ver. 2.3 EBSE Technical Report. EBSE.  
Kelly, D. 2006a. Measuring online information seeking context, part 1: Background and method. Journal of the American Society for Information Science and Technology 57 (13): 1729–1739.
Kelly, D. 2006b. Measuring online information seeking context, part 2: Findings and discussion. Journal of the American Society for Information Science and Technology 57 (14): 1862–1874.
Klimesch, Wolfgang, Bärbel Schack, and Paul Sauseng. 2005. The functional significance of theta and upper alpha oscillations. Experimental psychology 52 (2): 99-108.
Liu, Jiqun, and Chirag Shah. 2019. Interactive IR user study design, evaluation, and reporting. Synthesis Lectures on Information Concepts, Retrieval, and Services 11 (2): i-93.
Low, Thomas, Nikola Bubalo, Tatiana Gossen, Michael Kotzyba, André Brechmann, Anke Huckauf, and Andreas Nürnberger. 2017. Towards identifying user intentions in exploratory search using gaze and pupil tracking. In Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, pp. 273-276. Oslo, Norway.
Loyola, Pablo, Enzo Brunetti, Gustavo Martinez, Juan D. Velásquez, and Pedro Maldonado. 2016. Leveraging Neurodata to Support Web User Behavior Analysis. In Wisdom Web of Things, pp. 181-207. Springer, Cham: Springer.
Millet, Barbara. 2018. UX Research Methods for Designing Interactive Media. In Interaction in Digital News Media, pp. 85-113. Cham: Palgrave Macmillan.
Mitsui, M., C. Shah, & N. J. Belkin. 2016. Extracting information seek- ing intentions for web search sessions. In Proceedings of the 39th international acm sigir conference on research and development in information retrieval, pp. 841–844. NewYork: ACM
Moshfeghi, Yashar, and Joemon M. Jose. 2013. An effective implicit relevance feedback technique using affective, physiological and behavioural features. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pp. 133-142. Dublin Ireland.
Mostafa, Javed, and Jacek Gwizdka. 2016. Deepening the role of the user: Neuro-physiological evidence as a basis for studying and improving search. In Proceedings of the 2016 acm on conference on human information interaction and retrieval, pp. 63-70. Carrboro North Carolina USA, 
Müller-Putz, Gernot R., René Riedl, and Selina C Wriessnegger. 2015. Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. Communications of the Association for Information Systems 37 (1): 46.
Na, Kyoungsik. 2012. Exploring the effect of cognitive load on the propensity for query reformulation behavior. The Florida State University, Tallahassee, Florida.
Nicolae, Irina-Emilia, Laura Acqualagna, and Benjamin Blankertz. 2015. Tapping neural correlates of the depth of cognitive processing for improving human computer interaction. In International Workshop on Symbiotic Interaction, pp. 126-131. Cham: Springer.
O'Brien, Heather L., Jacek Gwizdka, Irene Lopatovska, and Javed Mostafa. 2015. Psycho-physiological Methods in Information Science: Fit or Fad? iConference 2015 Proceedings. Newport Beach, California, USA.
O'Brien, Heather L., Rebecca Dickinson, and Nicole Askin. 2017. A scoping review of individual differences in information seeking behavior and retrieval research between 2000 and 2015. Library & Information Science Research 39 (3): 244-254.
Orso, V., T. Ruotsalo, J. Leino, L. Gamberini, & G. Jacucci. 2017. Overlaying social information: The effects on users’ search and information-selection behavior. Information Processing & Management, 53 (6): 1269–1286.
Pereda-Baños, Alexandre, Ioannis Arapakis, and Miguel Barreda-Ángeles. 2015. On human information processing in information retrieval (position paper). In Proceedings of the SIGIR Workshop Neuro-Physiological Methods IR, Santiago, Chile, vol. 13.
Rajanen, Dorina, Mikko Salminen, and Niklas Ravaja. 2015. Psychophysiological responses to digital media: frontal EEG alpha asymmetry during newspaper reading on a tablet versus print. In Proceedings of the 19th International Academic Mindtrek Conference, pp. 155-162. Tampere Finland.
Riding, Richard J., Alan Glass, Stuart R. Butler, and Christopher W. Pleydell‐Pearce. 1997. Cognitive style and individual differences in EEG alpha during information processing. Educational Psychology 17 (1-2): 219-234.
Riding Richard and Stephen Rayner. 2013. Cognitive Styles and Learning Strategies: Understanding Style Differences in Learning and Behavior. Hoboken: Taylor and Francis. http://www.123library.org/book_details/?id=112911. London And NewYork: Routledge Taylor & Francis Group.
Riedl, René, and Pierre-Majorique Léger. 2016a. Fundamentals of NeuroIS. Studies in Neuroscience, Psychology and Behavioral Economics. Berlin, Heidelberg: Springer.
Riedl, René, and Pierre-Majorique Léger. 2016b. Tools in NeuroIS research: an overview. In Fundamentals of NeuroIS, pp. 47-72. Berlin, Heidelberg: Springer.
Riedl, René, and Pierre-Majorique Léger. 2016c. Topics in NeuroIS and a Taxonomy of Neuroscience Theories in NeuroIS. In Fundamentals of NeuroIS, pp. 73-98. Berlin, Heidelberg: Springer.
Sarkar, Shawon, Matthew Mitsui, Jiqun Liu, and Chirag Shah. 2020. Implicit information need as explicit problems, help, and behavioral signals. Information Processing & Management 57 (2): 102069.
Sarraf, Niloufar. 2019. Mapping the neural activities and affective dimensions of the ISP model: Correlates in the search exploration, formulation, and collection stages. PhD diss., Queensland University of Technology, 2019.
Scharinger, Christian, Yvonne Kammerer, and Peter Gerjets. 2015. Pupil dilation and EEG alpha frequency band power reveal load on executive functions for link-selection processes during text reading. PloS one 10 (6): e0130608.
Schultheis, Holger, and Anthony Jameson. 2004. Assessing cognitive load in adaptive hypermedia systems: Physiological and behavioral methods. In International conference on adaptive hypermedia and adaptive web-based systems, pp. 225-234. Berlin, Heidelberg: Springer.
Shovon, Md Hedayetul Islam, D. Nandagopal, Jia Tina Du, Ramasamy Vijayalakshmi, and Bernadine Cocks. 2015. Cognitive activity during web search. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 967-970.
Silverstein, C., H. Marais, M. Henzinger, & M. Moricz. 1999. Analysis of a very large web search engine query log. ACM SIGIR Forum, NewYork, NY, United Satates.
Singh, Vivek K., Chirag Shah, Jacek Gwizdka, Hideo Joho, and Cathal Gurrin. 2017. From sensors to sense‐making: Opportunities and challenges for information science. Proceedings of the Association for Information Science and Technology 54 (1): 599-602.
Slanzi, Gino, Jorge Balazs, and Juan D. Velásquez. 2016. Predicting Web user click intention using pupil dilation and electroencephalogram analysis. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 417-420. IEEE. Omaha, NE, USA.
Sohn, T., K. A. Li, W. G. Griswold, & J. D. Hollan. 2008. A diary study of mobile information needs. In Proceedings of the sigchi conference on human factors in computing systems (pp. 433–442). NewYork: ACM.
Soltani, Diana, Matthew Mitsui, and Chirag Shah. 2019. Coagmento v3. 0: Rapid prototyping of web search experiments. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, pp. 367-371. Glasgow, Scotland, UK.
Teevan, J., C. Alvarado, M. S. Ackerman, & D. R. Karger. 2004. The perfect search engine is not enough: A study of orienteering behav- ior in directed search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 415–422). NewYork: ACM.
Vakkari, P. 2003. Task-based information searching. Annual Review of Information Science and Technology 37 (1): 413–464.
Vuong, Tung, Miamaria Saastamoinen, Giulio Jacucci, and Tuukka Ruotsalo. 2019. Understanding user behavior in naturalistic information search tasks. Journal of the Association for Information Science and Technology 70 (11): 1248-1261.
Wang, Jun, Eric Pohlmeyer, Barbara Hanna, Yu-Gang Jiang, Paul Sajda, and Shih-Fu Chang. 2009. Brain state decoding for rapid image retrieval. In Proceedings of the 17th ACM international conference on Multimedia, pp. 945-954. Beijing China.
Wittek, Peter, Ying-Hsang Liu, Sándor Darányi, Tom Gedeon, and Ik Soo Lim. 2016. Risk and ambiguity in information seeking: Eye gaze patterns reveal contextual behavior in dealing with uncertainty. "Frontiers in psychology 7: 1790.
Xiao, Yu, and Maria Watson. 2019. Guidance on conducting a systematic literature review. Journal of Planning Education and Research 39 (1): 93-112.
Xu, Jianhua, Qi Kang, and Zhiqiang Song. 2015. The current state of systematic reviews in library and information studies. Library & Information Science Research 37 (4): 296-310.