ارائه مدل اینترنت انرژی برای مدیریت بهینه انرژی با رویکرد ساختاری-تفسیری

نویسندگان

1 دانشگاه علم و صنعت ایران؛ تهران، ایران؛

2 دانشگاه صنعتی مالک اشتر؛ تهران، ایران

3 دانشگاه علم و صنعت ایران؛ تهران، ایران

چکیده

افزایش روزافزون تقاضا برای انرژی، آلودگی ناشی از مصرف انرژی فسیلی و گرمایش زمین عمده‌ترین عواملی هستند که مدیریت بهینه انرژی را ضروری ساخته‌اند. به ‌مدد پیشرفت‌ فناوری اطلاعات، پارادایم جدیدی به نام اینترنت انرژی پدید آمده که ابزارهای لازم برای مدیریت بهینه انرژی را فراهم کرده است. اینترنت انرژی با ظهور اینترنت اشیا گسترش چشمگیری داشته است، به‌طوری‌که اینترنت انرژی با تلفیق ویژگی‌های شبکه‌های هوشمند و اینترنت اشیا در جهت مدیریت انرژی حرکت می‌کند. مطالعه حاضر، پژوهشی کاربردی است که با هدف ارائه مدل اینترنت انرژی برای مدیریت بهینه انرژی صورت گرفته است. برای دستیابی به اهداف پژوهش، نخست با توجه به مطالعات پیشین و مصاحبه با خبرگان، مجموعه‌ای از شاخص‌های کاربردی مفهوم اینترنت انرژی شناسایی شد، الگوی روابط علّی این شاخص‌ها با تکنیک «دیمتل» فازی مشخص گردید، و سپس، این عوامل با استفاده از تکنیک مدل‌سازی ساختاری-تفسیری، تجزیه و تحلیل و سرانجام، ارتباط و توالی شاخص‌ها به‌دست آمد. از میان شاخص‌ها، وجود سرورهای اینترنتی قدرتمند در کشور، تجهیز لوازم مصرفی به اینترنت، و نظارت برخط بر میزان مصرف انرژی هر فرد در سطح نخست مدل پژوهش قرار گرفته و پایه‌ای‌ترین شاخص‌ها جهت پیاده‌سازی مفهوم اینترنت انرژی هستند. وجود کلیه این‌ شاخص‌ها در نهایت، منوط به وجود منابع مالی لازم برای استفاده از اینترنت انرژی و عزم و اراده لازم برای به‌کارگیری اینترنت انرژی در سطح کلان هستند. بینشی که این مدل به مدیریت کلان انرژی در کشور ارائه می‌دهد، می‌تواند به آن‌ها در برنامه‌ریزی راهبردی انرژی جهت تولید، تبدیل، انتقال، توزیع و مصرف انرژی کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of the Internet of Energy (IOE) for Optimal Energy Management with an Interpretive Structural Modeling (ISM) Approach

نویسندگان [English]

  • Mir Hamid Taghavi 1
  • Peyman Akhavan 2
  • Rohollah Ahmadi 1
  • Ali Bonyadi Naeini 3
چکیده [English]

Increasing demand for energy, pollution from fossil energy consumption and global warming are the key factors that have made optimal energy management necessary. The advent of information technology has led to the emergence of a new paradigm called the Internet of Energy (IOE). IOE is a new concept that provides the tools needed for optimal energy management. IOE has expanded dramatically with the advent of the Internet of Things (IOTs). So that the Internet of Energy moves towards energy management by integrating the features of smart grids and the Internet of Things. The present study is an applied research that aimed at conceptualizing of the Internet of Energy. In order to achieve the research objectives, a series of indicators of IOE were identified according to the previous studies and interviews with experts. The pattern of causal relations of these indices has been identified by the FUZZY DEMATEL technique. Then, these factors have been analyzed by Interpretive Structural Modeling (ISM) technique, and finally, the relationship and sequence of the indices have been obtained. Among the indicators, existence of powerful internet servers in the country, equipping consumable equipment with internet and online monitoring of each person’s energy consumption are at the first level of the research model and the most basic variables in applying the concept of IOE. All of these elements ultimately depend on the availability of financial resources and the determination to apply IOE at the macro level. The insight that this model provides to the energy management at the macro level can be helpful in strategic planning for energy production, conversion, transmission, distribution and consumption in the country.

کلیدواژه‌ها [English]

  • Internet of Things (IOTs)
  • Internet of Energy (IOE)
  • Smart Grid
  • Sustainability
  • Interpretive Structural Modeling (ISM)
  1. آذر، عادل، و کریم بیات. 1387. طراحی مدل فرایندمحوری کسب‌وکار با رویکرد مدل‌سازی ساختاری-تفسیری (ISM). مدیریت فناوری اطلاعات 1 (1): 3-18.
  2. آذر، عادل، و کریم بیات. 1387. طراحی مدل فرایندمحوری کسب‌وکار با رویکرد مدل‌سازی ساختاری-تفسیری (ISM). مدیریت فناوری اطلاعات 1 (1): 3-18.
  3. آذر، عادل، علی تیزرو، عباس مقبل، و علی‌اصغر انواری رستمی. 1389. طراحی مدل چابکی زنجیره تأمین با رویکرد مدل‌سازی تفسیری-ساختاری، پژوهش‌های مدیریت در ایران (14): 4 (پیاپی 69): 1-25.
  4. آذر، عادل، علی تیزرو، عباس مقبل، و علی‌اصغر انواری رستمی. 1389. طراحی مدل چابکی زنجیره تأمین با رویکرد مدل‌سازی تفسیری-ساختاری، پژوهش‌های مدیریت در ایران (14): 4 (پیاپی 69): 1-25.
  5. حبیبی، آرش، صدیقه ایزدیار، و اعظم سرافرازی. 1393. تصمیم‌گیری چندمعیاره فازی. رشت: انتشارات کتیبه گیل.
  6. حبیبی، آرش، صدیقه ایزدیار، و اعظم سرافرازی. 1393. تصمیم‌گیری چندمعیاره فازی. رشت: انتشارات کتیبه گیل.
  7. حسینی، مازیار. 1387. مدیریت بحران. تهران: مؤسسه نشر شهر.
  8. حسینی، مازیار. 1387. مدیریت بحران. تهران: مؤسسه نشر شهر.
  9. کرباسیان، مهدی، محمد جوانمردی، اعظم خبوشانی، و محمود زنجیرچی. 1390. کاربرد مدل (ISM) جهت سطح‌بندی شاخص‌های انتخاب تأمین‌کنندگان چابک و رتبه‌بندی تأمین‌کنندگان با استفاده از روش TOPSIS-AHP فازی. مدیریت تولید و عملیات 2 (1): 107-134.
  10. کرباسیان، مهدی، محمد جوانمردی، اعظم خبوشانی، و محمود زنجیرچی. 1390. کاربرد مدل (ISM) جهت سطح‌بندی شاخص‌های انتخاب تأمین‌کنندگان چابک و رتبه‌بندی تأمین‌کنندگان با استفاده از روش TOPSIS-AHP فازی. مدیریت تولید و عملیات 2 (1): 107-134.
  11. Bui, N., A. P. Castellani, P. Casari, & M. Zorzi. 2012. The internet of energy: a web-enabled smart grid system. IEEE Network 26 (4): 39-45. [DOI:10.1109/MNET.2012.6246751]
  12. Bui, N., A. P. Castellani, P. Casari, & M. Zorzi. 2012. The internet of energy: a web-enabled smart grid system. IEEE Network 26 (4): 39-45. [DOI:10.1109/MNET.2012.6246751]
  13. Connolly, D., H. Lund, & B. V. Mathiesen. 2016. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European :union:. Renewable and Sustainable Energy Reviews 60: 1634-1653.‌ [DOI:10.1016/j.rser.2016.02.025]
  14. Connolly, D., H. Lund, & B. V. Mathiesen. 2016. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European :union:. Renewable and Sustainable Energy Reviews 60: 1634-1653.‌ [DOI:10.1016/j.rser.2016.02.025]
  15. Fontela, E., & A. Gabus. 1974. DEMATEL, Innovative Methods, Report No. 2 Structural Analysis of the World Problematique. Battelle Geneva: Research Institute.
  16. Fontela, E., & A. Gabus. 1974. DEMATEL, Innovative Methods, Report No. 2 Structural Analysis of the World Problematique. Battelle Geneva: Research Institute.
  17. Grubler, A., C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D. L. McCollum,& J. Cullen. 2018. A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy 3 (6): 515-527.‌ [DOI:10.1038/s41560-018-0172-6]
  18. Grubler, A., C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D. L. McCollum,& J. Cullen. 2018. A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy 3 (6): 515-527.‌ [DOI:10.1038/s41560-018-0172-6]
  19. Hannan, M. A., M. Faisal, P. J. Ker, L. H. Mun, K. Parvin, T. M. I. Mahlia, & F. Blaabjerg. 2018. A review of internet of energy based building energy management systems: Issues and recommendations. IEEE Access 6: 38997-39014. [DOI:10.1109/ACCESS.2018.2852811]
  20. Hannan, M. A., M. Faisal, P. J. Ker, L. H. Mun, K. Parvin, T. M. I. Mahlia, & F. Blaabjerg. 2018. A review of internet of energy based building energy management systems: Issues and recommendations. IEEE Access 6: 38997-39014. [DOI:10.1109/ACCESS.2018.2852811]
  21. Hittinger, E., & P. Jaramillo. 2018. Internet of Things: Energy boon or bane? Science 364 (6438): 326-328. [DOI:10.1126/science.aau8825]
  22. Hittinger, E., & P. Jaramillo. 2018. Internet of Things: Energy boon or bane? Science 364 (6438): 326-328. [DOI:10.1126/science.aau8825]
  23. Hong, Z., Y. Feng, L. Zhiwu, Y. Wong, & H. Zheng. 2019. An integrated approach for multi-objective optimisation and MCDM of energy internet under uncertainty. Future Generation Computer Systems 18: 1-20. [DOI:10.1016/j.future.2019.02.046]
  24. Hong, Z., Y. Feng, L. Zhiwu, Y. Wong, & H. Zheng. 2019. An integrated approach for multi-objective optimisation and MCDM of energy internet under uncertainty. Future Generation Computer Systems 18: 1-20. [DOI:10.1016/j.future.2019.02.046]
  25. Hossein Motlagh, N., M. Mohammadrezaei, J. Hunt, & B. Zakeri. 2020. Internet of Things (IoT) and the energy sector. Energies 13 (2): 494.‌ [DOI:10.3390/en13020494]
  26. Hossein Motlagh, N., M. Mohammadrezaei, J. Hunt, & B. Zakeri. 2020. Internet of Things (IoT) and the energy sector. Energies 13 (2): 494.‌ [DOI:10.3390/en13020494]
  27. Huang, A. Q., M. L. Crow, G. T. Heydt, J. P. Zheng, & S. J. Dale. 2011. The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proceedings of the IEEE 99 (1): 133-148. [DOI:10.1109/JPROC.2010.2081330]
  28. Huang, A. Q., M. L. Crow, G. T. Heydt, J. P. Zheng, & S. J. Dale. 2011. The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proceedings of the IEEE 99 (1): 133-148. [DOI:10.1109/JPROC.2010.2081330]
  29. Jaradat, M., M. Jarrah, A. Bousselham, Y. Jararweh, & M. Al-Ayyoub. 2015. The internet of energy: smart sensor networks and big data management for smart grid. Procedia Computer Science 56: 592-597. [DOI:10.1016/j.procs.2015.07.250]
  30. Jaradat, M., M. Jarrah, A. Bousselham, Y. Jararweh, & M. Al-Ayyoub. 2015. The internet of energy: smart sensor networks and big data management for smart grid. Procedia Computer Science 56: 592-597. [DOI:10.1016/j.procs.2015.07.250]
  31. Jia, M., A. Komeily, Y. Wang, & R. S. Srinivasan. 2019. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction 101: 111-126. [DOI:10.1016/j.autcon.2019.01.023]
  32. Jia, M., A. Komeily, Y. Wang, & R. S. Srinivasan. 2019. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction 101: 111-126. [DOI:10.1016/j.autcon.2019.01.023]
  33. Kahraman, Cengiz. 2009. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments Front Cover. Springer optimization and its applications 16, ISSN 1931-6828. [DOI:10.1007/978-0-387-76813-7]
  34. Kahraman, Cengiz. 2009. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments Front Cover. Springer optimization and its applications 16, ISSN 1931-6828. [DOI:10.1007/978-0-387-76813-7]
  35. Kanan F. T. 2009. Toward interpretation of complex structural modeling. IEEE Trans. Systems, Man and Cybernet 4 (5): 32-36.
  36. Kanan F. T. 2009. Toward interpretation of complex structural modeling. IEEE Trans. Systems, Man and Cybernet 4 (5): 32-36.
  37. Lin, C. C., D. J. Deng, C. C., Kuo, &Y. L. Liang. 2018. Optimal charging control of energy storage and electric vehicle of an individual in the internet of energy with energy trading. IEEE Transactions on Industrial Informatics 14 (6): 2570-2578. [DOI:10.1109/TII.2017.2782845]
  38. Lin, C. C., D. J. Deng, C. C., Kuo, &Y. L. Liang. 2018. Optimal charging control of energy storage and electric vehicle of an individual in the internet of energy with energy trading. IEEE Transactions on Industrial Informatics 14 (6): 2570-2578. [DOI:10.1109/TII.2017.2782845]
  39. Lombardi, F., L. Aniello, S. De Angelis, A. Margheri, & V. Sassone. 2018. A blockchain-based infrastructure for reliable and cost-effective IoT-aided smart grids. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT. London, UK. [DOI:10.1049/cp.2018.0042]
  40. Lombardi, F., L. Aniello, S. De Angelis, A. Margheri, & V. Sassone. 2018. A blockchain-based infrastructure for reliable and cost-effective IoT-aided smart grids. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT. London, UK. [DOI:10.1049/cp.2018.0042]
  41. Ma, R, H. H, Chen, Y. R. Huang, & w. Meng. 2013. Smart grid communication: its challenges and opportunities. IEEE Transactions 4. Pp: 36-46. [DOI:10.1109/TSG.2012.2225851]
  42. Ma, R, H. H, Chen, Y. R. Huang, & w. Meng. 2013. Smart grid communication: its challenges and opportunities. IEEE Transactions 4. Pp: 36-46. [DOI:10.1109/TSG.2012.2225851]
  43. Nguyen, V., T. Vu, N. Le, & Y. Ang. 2018. An Overview of Internet of Energy (IoE) Based Building Energy Management System. IEEE Xplore Digital Library [DOI:10.1109/ICTC.2018.8539513]
  44. Nguyen, V., T. Vu, N. Le, & Y. Ang. 2018. An Overview of Internet of Energy (IoE) Based Building Energy Management System. IEEE Xplore Digital Library [DOI:10.1109/ICTC.2018.8539513]
  45. Poyner, I. K., & R. S. Sherratt. 2018. Privacy and security of consumer IoT devices for the pervasive monitoring of vulnerable people. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT-London, UK, 28-29 March 2018; PP. 1-5. [DOI:10.1049/cp.2018.0043]
  46. Poyner, I. K., & R. S. Sherratt. 2018. Privacy and security of consumer IoT devices for the pervasive monitoring of vulnerable people. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT-London, UK, 28-29 March 2018; PP. 1-5. [DOI:10.1049/cp.2018.0043]
  47. Qi, J., & D. Wu. 2018. Green energy management of the energy Internet based on service composition quality. IEEE Access 6: 15723-15732. [DOI:10.1109/ACCESS.2018.2816558]
  48. Qi, J., & D. Wu. 2018. Green energy management of the energy Internet based on service composition quality. IEEE Access 6: 15723-15732. [DOI:10.1109/ACCESS.2018.2816558]
  49. Qiu, C., S. Cui, H. Yao, F. Xu, F. R. Yu, & C. Zhao. 2019. A novel QoS-enabled load scheduling algorithm based on reinforcement learning in software-defined energy internet. Future Generation Computer Systems 92: 43-51. [DOI:10.1016/j.future.2018.09.023]
  50. Qiu, C., S. Cui, H. Yao, F. Xu, F. R. Yu, & C. Zhao. 2019. A novel QoS-enabled load scheduling algorithm based on reinforcement learning in software-defined energy internet. Future Generation Computer Systems 92: 43-51. [DOI:10.1016/j.future.2018.09.023]
  51. Rifkin, J. 2011. The Third Industrial Revolution: How Lateral Power is transforming Energy, the Economy, and the World. New York: Palgrave MacMillan.
  52. Rifkin, J. 2011. The Third Industrial Revolution: How Lateral Power is transforming Energy, the Economy, and the World. New York: Palgrave MacMillan.
  53. Sage, A. P. 1977. Interpretive structural modeling: Methodology for large-scale systems. New York, NY: McGraw-Hil.
  54. Sage, A. P. 1977. Interpretive structural modeling: Methodology for large-scale systems. New York, NY: McGraw-Hil.
  55. Sani, A. S., D. Yuan, J. Jin, L. Gao, S. Yu, & Z. Y. Dong. 2019. Cyber security framework for Internet of Things-based Energy Internet. Future Generation Computer Systems 93: 849-859. [DOI:10.1016/j.future.2018.01.029]
  56. Sani, A. S., D. Yuan, J. Jin, L. Gao, S. Yu, & Z. Y. Dong. 2019. Cyber security framework for Internet of Things-based Energy Internet. Future Generation Computer Systems 93: 849-859. [DOI:10.1016/j.future.2018.01.029]
  57. Tamilselvan, K., & P. Thangaraj. 2020. Pods-A novel intelligent energy efficient and dynamic frequency scalings for multi-core embedded architectures in an IoT environment. Microprocessors and Microsystems 72: 102907.‌ [DOI:10.1016/j.micpro.2019.102907]
  58. Tamilselvan, K., & P. Thangaraj. 2020. Pods-A novel intelligent energy efficient and dynamic frequency scalings for multi-core embedded architectures in an IoT environment. Microprocessors and Microsystems 72: 102907.‌ [DOI:10.1016/j.micpro.2019.102907]
  59. Tan, Y. S., Y. T. Ng, J. S. C. & Low. 2017. Internet-of-things enabled real-time monitoring of energy efficiency on manufacturing shop floors. Procedia CIRP 61: 376-381.‌ [DOI:10.1016/j.procir.2016.11.242]
  60. Tan, Y. S., Y. T. Ng, J. S. C. & Low. 2017. Internet-of-things enabled real-time monitoring of energy efficiency on manufacturing shop floors. Procedia CIRP 61: 376-381.‌ [DOI:10.1016/j.procir.2016.11.242]
  61. Thakkar, J., S. G. Deshmukh, A. D. Gupta, & R. Shankar. 2007. Development of a balanced scorecard. An integrated approach of Interpretive Structural Modeling (ISM) and Analytic Network Process (ANP). International Journal of Productivity and Performance Management 56 (1): 25-59. [DOI:10.1108/17410400710717073]
  62. Thakkar, J., S. G. Deshmukh, A. D. Gupta, & R. Shankar. 2007. Development of a balanced scorecard. An integrated approach of Interpretive Structural Modeling (ISM) and Analytic Network Process (ANP). International Journal of Productivity and Performance Management 56 (1): 25-59. [DOI:10.1108/17410400710717073]
  63. Town, G. E., K. Mahmud, S. Morsalin, & M. J. Hossain. 2018. Integration of electric vehicles and management in the internet of energy. Renewable and Sustainable Energy Reviews 82: 4179-4203. [DOI:10.1016/j.rser.2017.11.004]
  64. Town, G. E., K. Mahmud, S. Morsalin, & M. J. Hossain. 2018. Integration of electric vehicles and management in the internet of energy. Renewable and Sustainable Energy Reviews 82: 4179-4203. [DOI:10.1016/j.rser.2017.11.004]
  65. Tzeng, G.-H., & J.-Y. Teng. 1993. Transportation investment project selection with fuzzy multi-objectives. Transportation Planning and Technology 17 (2): 91-112. [DOI:10.1080/03081069308717504]
  66. Tzeng, G.-H., & J.-Y. Teng. 1993. Transportation investment project selection with fuzzy multi-objectives. Transportation Planning and Technology 17 (2): 91-112. [DOI:10.1080/03081069308717504]
  67. Umer, T., M. H. Rehmani, A. E. Kamal, & L. Mihaylova. 2019. Information and resource management systems for Internet of Things: Energy management, communication protocols and future applications, Future Generation Computer Systems [DOI:10.1016/j.future.2018.11.032]
  68. Umer, T., M. H. Rehmani, A. E. Kamal, & L. Mihaylova. 2019. Information and resource management systems for Internet of Things: Energy management, communication protocols and future applications, Future Generation Computer Systems [DOI:10.1016/j.future.2018.11.032]
  69. Wang, Z. 2019. Entropy theory of distributed energy for Internet of Things. Nano Energy 19: 1-11.
  70. Wang, Z. 2019. Entropy theory of distributed energy for Internet of Things. Nano Energy 19: 1-11.
  71. Yan, Z. & Hu, J. 2018. Energy Internet in the Yangtze River Delta: Opportunities, challenges and suggestions. Frontiers in Energy 12 (4): PP. 484-492. [DOI:10.1007/s11708-018-0600-0]
  72. Yan, Z. & Hu, J. 2018. Energy Internet in the Yangtze River Delta: Opportunities, challenges and suggestions. Frontiers in Energy 12 (4): PP. 484-492. [DOI:10.1007/s11708-018-0600-0]
  73. Yang, X., Zhou, P., Zhang, X., Lin, J. and Yu, W., (2017). Toward a Gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. IEEE Internet of Things Journal 4(1), PP. 147-161. [DOI:10.1109/JIOT.2016.2631520]
  74. Yang, X., Zhou, P., Zhang, X., Lin, J. and Yu, W., (2017). Toward a Gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. IEEE Internet of Things Journal 4(1), PP. 147-161. [DOI:10.1109/JIOT.2016.2631520]
  75. Yin, Shih-Hsi, Ching-Cheng Wang, Liang-Yuan Teng, and Yulam Magnolla Hsing. 2012. Application of DEMATEL, ISM, and ANP for key success factor (KSF) complexity analysis in R&D alliance. Scientific Research and Essays 7 (19): 1872-1890. [DOI:10.5897/SRE11.2252]
  76. Yin, Shih-Hsi, Ching-Cheng Wang, Liang-Yuan Teng, and Yulam Magnolla Hsing. 2012. Application of DEMATEL, ISM, and ANP for key success factor (KSF) complexity analysis in R&D alliance. Scientific Research and Essays 7 (19): 1872-1890. [DOI:10.5897/SRE11.2252]
  77. Zakeri, B., S. Syri, & S. Rinne. 2015. Higher renewable energy integration into the existing energy system of Finland-Is there any maximum limit? Energy 92: 244-259.‌ [DOI:10.1016/j.energy.2015.01.007]
  78. Zakeri, B., S. Syri, & S. Rinne. 2015. Higher renewable energy integration into the existing energy system of Finland-Is there any maximum limit? Energy 92: 244-259.‌ [DOI:10.1016/j.energy.2015.01.007]
  79. Zhou D. Q., Z. L. Ling, H. W. Li. 2006. A Study of the System's Hierarchical Structure through Integration of DEMATEL and ISM. International Conference on Machine Learning and Cybernetics, Dalian, China. [DOI:10.1109/ICMLC.2006.258757]
  80. Zhou D. Q., Z. L. Ling, H. W. Li. 2006. A Study of the System's Hierarchical Structure through Integration of DEMATEL and ISM. International Conference on Machine Learning and Cybernetics, Dalian, China. [DOI:10.1109/ICMLC.2006.258757]
  81. Zhou, X., F. Wang, & Y. Ma. 2015. An overview on energy internet. International Conference on Mechatronics and Automation (ICMA) (pp. 126-131). IEEE. Beijing, China. [DOI:10.1109/ICMA.2015.7237469]
  82. Zhou, X., F. Wang, & Y. Ma. 2015. An overview on energy internet. International Conference on Mechatronics and Automation (ICMA) (pp. 126-131). IEEE. Beijing, China. [DOI:10.1109/ICMA.2015.7237469]