مجاورت و همکاری علمی: کاربرد مدل جاذبه در شناسایی تأثیر ابعاد مجاورت بر همکاری علمی بین المللی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

کشورها در ابعاد فیزیکی، سیاسی، اقتصادی، اجتماعی، فرهنگی، و علمی مجاور یا مخالف هم هستند. مجاورت یا فاصله بین کشورها از حیث ابعاد شش‌گانه مذکور می‌توان زمینه‌ساز یا مانع همکاری علمی قوی بین آن‌ها شود. اهداف پژوهش حاضر در درجه اول شناسایی ابعادی است که شدت همکاری‌های علمی بین‌المللی را بهتر تبیین می‌کنند و در درجه دوم، بررسی نوسانات شدت تأثیر هر بعد در خلال زمان است. در راستای اهداف پژوهش و بر مبنای تلفیق ادبیات مجاورت با چارچوب فاصله «کَیج»، عوامل تعیین‌کننده همکاری علمی بین‌المللی استخراج شدند. جامعه آماری پژوهش عبارت بود از 167 کشور مستقل در فاصله سال‌های 2002 و 2017. در این پژوهش، شبکه روابط هم‌نویسندگی بین کشورها به‌عنوان شاخص همکاری علمی بین‌المللی محسوب می‌شود که داده‌های آن از پایگاه «وب‌آو‌ساینس» گردآوری شد. همچنین، داده‌های ابعاد مجاورت از پایگاه‌های داده گوناگون (سازمان ملل، مرکز تجارت بین‌المللی و غیره) جمع‌آوری شد. پژوهش حاضر دارای ماهیت تبیینی و مبتنی ‌بر تحلیل داده‌های ثانویه با رویکرد کمّی (مدل جاذبه) است. برآورد اثرات مدل با استفاده از بسته fixest در نرم‌افزار R انجام شد. کاربرد مدل جاذبه نشان داد که شدت همکاری‌های علمی بین‌المللی رابطه مستقیم با مجاورت و رابطه معکوس با فاصله بین کشورها در ابعاد مختلف دارد. یافته‌های حاصل از مقایسه قدرت تبیین ابعاد شش‌گانه مجاورت حاکی از قدرت تبیین بالای بعد مجاورت اجتماعی نسبت به سایر ابعاد بود. با وجود این، یافته‌های بهبود مدل نشان داد که حضور همزمان ابعاد سیاسی، اقتصادی و اجتماعی مجاورت نیز قدرت تبیینی نزدیک به قدرت تبیین بعد مجاورت اجتماعی دارند. بررسی نوسانات شدت تأثیر ابعاد مجاورت بر همکاری‌های علمی بین‌المللی در طول زمان نشان‌دهنده افزایش معنادار تأثیر مجاورت در ابعاد اقتصادی، اجتماعی و علمی، زبان مشترک در بعد فرهنگی و همکاری‌های درون‌منطقه‌ای و همکاری بین کشورهای همسایه در بعد فیزیکی است. این در حالی است که تأثیر فاصله جغرافیایی در بعد فیزیکی، روابط استعماری در بعد سیاسی و اشتراکات دینی و قومی در بعد فرهنگی کاهش معناداری یافته است. تنها در بعد سیاسی مجاورت است که تأثیر اکثر عوامل مقطعی (مانند تفاوت بین طرفین همکاری از حیث درجه تحقق حکومت لیبرال دموکراسی، فاصله از حیث میزان کارایی حکومت‌های طرفین همکاری و اعمال تحریم علیه طرف مقابل) و گاهی ثابت است (مانند عضویت طرفین همکاری در پیمان‌های بین‌المللی مشترک).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proximity and scientific collaboration: Application of gravity model in identifying the effect of proximity dimensions on international scientific collaboration

نویسندگان [English]

  • mahsa Sadeghinezhad
  • Mohsen Noghani Dokht Bahmani
  • Ahmadreza Asgharpourmasouleh
چکیده [English]

Countries are adjacent or opposite in physical, political, economic, social, cultural, and scientific dimensions. Proximity or distance among countries in terms of the above dimensions can cause or prevent strong inter-country scientific collaboration. The objectives of this research are primarily to identify the dimensions that better explain the intensity of international scientific collaboration, and secondly, to investigate the fluctuations in the intensity of the influence of each dimension over time. To achieve the above-mentioned aims, and based on the integration of proximity literature with the CAGE distance framework, the determining factors of international scientific collaboration were extracted. The population of the research consisted of 167 independent countries in the period of 2002-2017. In this research, the network of co-author relations between countries is considered as an indicator of international scientific collaboration, whose data was collected from the Web of Science database. Also, data on proximity dimensions were collected from various databases (United Nations, International Trade Center, etc.). This research has an explanatory nature and is based on the analysis of secondary data with a quantitative approach (a gravity model). Model effects were estimated using R package fixest. The application of this model showed that the intensity of international scientific collaboration has a positive relationship with proximity and a negative relationship with the distance between countries in different dimensions. The findings obtained from the comparison of the explanatory power of the proximity dimensions indicated the high explanatory power of social proximity. Nevertheless, the findings of the model improvement showed that the simultaneous presence of political, economic, and social dimensions also have an explanatory power close to that of the social proximity. Examining the fluctuations in the influence of proximity dimensions over time showed a significant increase in the influence of proximity in economic, social, and scientific dimensions, a common language in the cultural dimension, intra-regional collaboration, and collaboration between neighboring countries in the physical dimension. Meanwhile, the influence of geographical distance in the physical dimension, colonial relations in the political dimension, and religious and ethnic commonalities in the cultural dimension have decreased significantly. It is only in the political dimension that the effect of most factors is partial (such as the difference in terms of the degree of realization of the liberal democratic government or the efficiency of the government, and the imposition of sanctions against the other party) and sometimes is fixed (such as common membership in international agreements).

کلیدواژه‌ها [English]

  • International Scientific Collaboration
  • Co-Authorship Network
  • Proximity Dimensions
  • CAGE Distance Framework
  • Gravity Model
Avdeev, S. 2021. International collaboration in higher education research: A gravity model approach. Scientometrics 126 (7): 1-20.
Badie, B., D. Berg-Schlosser, and L. Morlino, L. 2011. Liberalism in international relations. In International encyclopedia of political science (Vol. 1, pp. 1435-1439). California: SAGE Publications, Inc.
Bai, X., and Y. Liu. 2016. International collaboration patterns and effecting factors of emerging technologies. PloS one 11 (12): e0167772.
Bordons, M., I. Gomez, M. T. Fernandez, M. A. Zulueta, and A. Mendez. 1996. Local, domestic and international scientific collaboration in biomedical research. Scientometrics 37 (2): 279–295.
Boschma, R. A. 2005. Proximity and Innovation: A Critical Assessment. Regional Studies 39: 1–14.
Cardoso, F. H., and E. Faletto. 1979. Dependency and development in Latin America. Berkeley: University of California Press.
Cassi, L., A. Morrison, and A. L. Ter Wal. 2012. The evolution of trade and scientific collaboration networks in the global wine sector: A longitudinal study using network analysis. Economic geography 88 (3): 311-334.
Choi, S. 2012. Core-periphery, new clusters, or rising stars?: International research collaboration among ‘advanced’ countries in the era of globalization. Scientometrics 90 (1): 25-41.
Dawes, S. S., M. A. Gharawi, G. B. and Burke. 2012. Transnational public sector knowledge networks: Knowledge and information sharing in a multi-dimensional context. Government information quarterly 29: S112-S120.
Frenken, K., S. Hardeman, and J. Hoekman. 2009. Spatial scientometrics: Towards a cumulative research program. Journal of Infometrics 3: 222–232.
Ghemawat, P. 2001. Distance still matters. The hard reality of global expansion. Harvard Business Review 79 (8): 137-40.
Ghodoosi, F. 2013. Combatting economic sanctions: Investment disputes in times of political hostility, a case study of Iran. Fordham Int'l LJ 37: 1731.
Glanzel, W., and A. Schubert. 2005. Analyzing scientific networks through co-authorship. In H. F. Moed et al. (Eds.), Handbook of quantitative science and technology research (pp. 257–276). MA: Kluwer Academic Publishers.
Granovetter, M. S. 1973. The strength of weak ties. American journal of sociology 78 (6): 1360-1380.
Gui, Q., C. Liu, and D. Du. 2018. International knowledge flows and the role of proximity. Growth and Change 49 (3): 532-547.
_____. 2019. Globalization of science and international research collaboration: A network perspective. Geoforum 105: 1-12.
Hoekman, J., K. Frenkena, and J. W. Tijssenc. 2010. Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy 39: 662–673.
Hou, C., P. Fan, D. Du, Q. Gui, and D. Duan. 2020. Does international student mobility foster research collaboration? Evidence from a network analysis. Compare: A Journal of Comparative and International Education 52 (2): 1-18.
Hou, L., Y. Pan, and J. J. Zhu. 2021. Impact of scientific, economic, geopolitical, and cultural factors on international research collaboration. Journal of Informetrics 15 (3): 101194.
Huynh, T., K. Hoang, & D. Lam. 2013, September. Trend based vertex similarity for academic collaboration recommendation. In international conference on computational collective intelligence (pp. 11-20). Berlin, Heidelberg: Springer.
Jiang, L., N. Zhu, Z. Yang, S. Xu, and M. Jun. 2018. The relationships between distance factors and international collaborative research outcomes: A bibliometric examination. Journal of Informetrics 12: 618-630.
Karlovcec, M., and D. Mladenic. 2015. Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring. Scientometrics 102 (1): 433–454.
Kato, M., and A. Ando. 2017. National ties of international research collaboration and researcher mobility found in Nature and Science. Scientometrics 110 (2): 673-694.
Katz, J. S., and B. R. Martin. 1997. What is research collaboration? Research Policy 26: 1–18.
Landini, F., F. Malerba, and R. Mavilia. 2015. The structure and dynamics of networks of scientific collaborations in Northern Africa. Scientometrics 105 (3): 1787-1807.
Niosi, J., and B. Bellon. 1994. The global interdependence of national innovation systems: Evidence, limits, and implications. Technology in Society 16 (2): 173–197.
Parreira, M. R., K. B. Machado, R. Logares, J. A. F. Diniz-Filho, and J. C. Nabout. 2017. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics 113 (3): 1539-1550.
Plotnikova, T., and B. Rake. 2014. Collaboration in pharmaceutical research: Exploration of country-level determinants. Scientometrics 98 (2): 1173-1202.
Schott, T. 1991. The world scientific community: Globality and globalisation. Minerva 29 (4): 440-462.
Stocks, G., L. Seales, F. Paniagua, E. Maehr, and E. M. Bruna. 2008. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40 (4): 397–404.
Vieira, E. S., J. Cerdeira, and A. A. Teixeira. 2022. Which distance dimensions matter in international research collaboration? A cross-country analysis by scientific domain. Journal of Informetrics 16 (2): 101259.
Weidmann, N. B., J. K. Rød, and L. E. Cederman. 2010. Representing ethnic groups in space: A new dataset. Journal of Peace Research 47 (4): 491–99.
Whetsell, T. A. 2022. Democratic governance and international research collaboration: A longitudinal analysis of the global science network. [Underprint]. https://doi.org/10.48550/arXiv.2203.01827.
Zhang, C., and J. Guo. 2017. China’s international research collaboration: Evidence from a panel gravity model. Scientometrics 113 (2): 1129-1139.
Zhao, K. 2017. China's public diplomacy for international public goods. Politics & Policy 45 (5): 706-732.
Zhu, B., Y. Xia, and X. J. Zhang. 2016. Weight prediction in complex networks based on neighbor set. Scientific reports 6 (1): 1-10.