پیش بینی روند همکاری های علمی ایران در پرتو پیوستن به معاهدات بین المللی: شبیه سازی سناریوهای محتمل با رویکرد مدلسازی عامل محور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم اجتماعی، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشکده ادبیات و علوم انسانی؛ دانشگاه فردوسی مشهد؛ مشهد، ایران

چکیده

طی دو دهه اخیر، برخی از معاهدات بین‌المللی نقش تعیین‌کننده‌ای در تسهیل همکاری علمی بین کشورهای عضو ایفا نموده‌اند. به‌ همین جهت مطالعه حاضر در صدد پیش‌بینی اثر عضویت ایران در این نوع معاهدات بر سه مورد است: اول، میزان همکاری علمی ایران با اعضای هر معاهده، دوم، میزان کل همکاری‌های علمی بین‌المللی ایران، و سوم، میزان وابستگی ایران به همکاری علمی با آمریکا به‌عنوان کلیدی‌ترین کنشگر شبکه همکاری علمی بین‌المللی. بر اساس پیشینه پژوهش، معاهداتی که تأثیر معناداری بر روابط همکاری علمی بین کشورها دارند عبارت‌اند از: «جی هفت»، «جی بیست»، «اتحادیه اروپا»، «سازمان همکاری و توسعه اقتصادی»، «اوپک»، «اَپک» و «بریکس». این مطالعه مبتنی ‌بر روش شبیه‌سازی (با رویکرد مدل‎سازی عامل‌محور) است. از این روش برای شبیه‌سازی شبکه همکاری‌های علمی بین کشورهای مستقل دارای بیش از یک میلیون نفر جمعیت در بازه 2023-2042 استفاده شد. داده‌های ثانویه مورد نیاز برای شبیه‌سازی از پایگاه «وب‌آو‌ساینس» و پایگاه داده «سازمان ملل» گردآوری شد. فرضیات مرتبط با سناریوهای محتمل بر مبنای مدل آماری «تفاوت در تفاوت» آزمون شدند. کلیه محاسبات اعم از شبیه‌سازی شبکه و آزمون فرضیات در محیط نرم‌افزار R انجام شد. یافته‌های پژوهش نشان داد که پیوستن ایران به «جی بیست»، «سازمان همکاری و توسعه اقتصادی» و «اَپک» سبب افزایش معنادار همکاری علمی ایران با اعضای هر کدام از این معاهدات خواهد شد. اما عضویت در «بریکس» تأثیر معناداری بر همکاری ایران با اعضای این معاهده ندارد. همچنین، پیوستن ایران به هر کدام از این چهار معاهده موجب افزایش معنادار میزان کل همکاری‌های علمی بین‌المللی ایران خواهد شد. با وجود این، میزان افزایش حاصل در سناریوی «جی بیست» بیشتر و در سناریوی «بریکس» کمتر از سایر معاهدات است. در همان ‌حال، عضویت ایران در «جی بیست» و «بریکس» منجر به افزایش معنادار وابستگی ایران به همکاری علمی با آمریکا خواهد شد. در مقابل، عضویت ایران در «سازمان همکاری و توسعه اقتصادی» و «اَپک» نقش بارزی در کاهش وابستگی ایران به همکاری علمی با آمریکا خواهد داشت. مزیت دیگر عضویت ایران در «سازمان همکاری و توسعه اقتصادی»، تقویت همکاری‌هایش با دو مورد از کنشگران کلیدی اروپا (فرانسه و ایتالیا)ست. از مزایای فرعی پیوستن ایران به «اَپک» نیز افزایش معنادار همکاری‌های علمی ایران با کنشگر کلیدی شرق آسیا (چین) است. نتایج حاکی از این است که پیوستن ایران به «اَپک» و «سازمان همکاری و توسعه اقتصادی»، هم به افزایش رؤیت‌پذیری آن در شبکه همکاری علمی بین‌المللی و هم به کاهش وابستگی‎اش به همکاری علمی با آمریکا کمک خواهد نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting Iran's Scientific Collaboration Trend in the Light of Joining International Treaties: Simulating Possible Scenarios Using an Agent-based Modeling Approach

نویسندگان [English]

  • Mahsa Sadeghinezhad 1
  • Mohsen Noghani Dokht Bahmani 2
  • Ahmadreza Asgharpourmasouleh 1
1 Department of Social Sciences, Faculty of Literature and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Social Sciences; Faculty of Literature and Humanities; Ferdowsi University of Mashhad; Mashhad, Iran.
چکیده [English]

During the last two decades, some international treaties have played a decisive role in facilitating scientific collaboration between member countries. For this reason, this study aims to predict the effect of Iran's membership in these treaties on three things: first, the amount of scientific collaboration between Iran and the members of each treaty; second, the total amount of Iran's international scientific collaboration; third, the extent of Iran's dependence on scientific collaboration with the USA as the most key actor in the international scientific collaboration network. According to the background, the treaties that have a significant impact on international scientific collaboration are G7, G20, EU, OECD, OPEC, APEC, and BRICS. This study is based on the simulation method (with an agent-based modeling approach). This method was used to simulate the network of scientific collaboration between independent countries with more than one million people in the period of 2023-2042. The secondary data required for the simulation were collected from the Web of Science database and the United Nations database. Hypotheses related to possible scenarios were tested based on difference-in-difference statistical model. All calculations, including network simulation and hypothesis testing, were performed in the R software environment. The findings showed that Iran's joining G20, OECD, and APEC will significantly increase Iran's scientific collaboration with the members of each treaty. However, Iran's membership in the BRICS will not have a significant effect on its collaboration with the BRICS members. Also, Iran's joining each of these four treaties will significantly increase the total amount of Iran's international scientific collaboration. However, the increase in the G20 scenario is higher, and in the BRICS scenario is lower than other treaties. At the same time, Iran's membership in G20 and BRICS will lead to a significant increase in Iran's dependence on collaboration with the USA. In return, Iran's membership in OECD and APEC will play a significant role in reducing Iran's dependence on collaboration with the USA. Another advantage of Iran's membership in the OECD is strengthening its collaboration with two of the key players in Europe (France and Italy). One of the side benefits of Iran's joining APEC is the significant increase in its collaboration with the key player in East Asia (China). The results indicated that Iran's joining OECD and APEC will help to increase Iran's visibility in the international scientific collaboration network and reduce Iran's dependence on collaboration with the USA.

کلیدواژه‌ها [English]

  • Scientific Collaboration
  • International Treaty
  • Simulation
  • Agent-based Modeling
  • Iran
خردمندان، آرزو، بهرام یوسفی، روح‎اله شهابی، و شیوا جلال‎پور. 1399. بررسی روابط گروه بریکس و سیاست خارجی جمهوری اسلامی ایران. سپهر سیاست 7 (26): 97-120.
دهشیری، محمدرضا، و زهرا بهرامی. 1394. نگاه استراتژیک چین به بریکس. آسیای مرکزی و قفقاز 21 (89): 33-63.
دیده‎گاه، فرشته، محمدامین عرفان‎منش، و پردیس پرتو. 1390. کارنامه همکاری علمی ایران و کشورهای عضو کنفرانس اسلامی طی سال‎های 1900 تا 2008. مطالعات ایرانیکتابداری و اطلاع‌رسانی 22 (2): 94-108.
ریاحی، عارف، و محمدامین قانعی‎راد. 1391. تعاملات و ارتباطات علمی ایران و کشورهای جی هشت. سیاست خارجی 26 (3): 647-662.
سعیدی، رضا، خلیل سعیدی، و علی دهقانی. 1393. امکان‎سنجی ایجاد موافقتنامه تجارت ترجیحی ایران با کشورهای گروه بریکس. پژوهشها و سیاستهای اقتصادی 22 (69): 107-130.
شاه‎آبادی، ابوالفضل، بهناز خوش‎طینت، امیرعلی اصغرنژاد، و علی مرادی. 1399. تأثیر کارایی بازارهای اقتصادی بر تجارت دوجانبه ایران و کشورهای منتخب سازمان همکاری اقتصادی و توسعه. مطالعات و سیاستهای اقتصادی 7 (1): 3-29.
صادقی‌نژاد، مهسا. 1401. تبیین و پیشبینی شبکه همکاری‌های علمی بین‌المللی با تأکید بر موقعیت ایران. رساله دکتری. دانشگاه فردوسی مشهد.
طیبی، کمیل، و زهرا زمانی. 1388. برون‌سپاری بین‎المللی، توسعه منابع انسانی و رشد اقتصادی در کشورهای آسیا - اقیانوسیه. مجله دانش و توسعه 17 (29): 1-20.
References
Borgatti, S. P., and M. G. Everett. 2000. Models of core/ periphery structures. Social networks 21 (4): 375-395.
Castellani, B., R. Rajaram, J. G. Buckwalter, M. Ball, and F. Hafferty. 2015. Place and health as complex systems: A case study and empirical test. Switzerland: Springer.
Chang, Y. H., K. K. Lai, C. Y. Lin, F. P. Su, and M. C. Yang. 2017. A hybrid clustering approach to identify network positions and roles through social network and multivariate analysis. Scientometrics 113 (3): 1733-1755.
Choi, S. 2012. Core-periphery, new clusters, or rising stars?: International research collaboration among ‘advanced’ countries in the era of globalization. Scientometrics 90 (1): 25-41.
Damodaran, A. 2007. Probabilistic approaches: Scenario analysis, decision trees and simulations. Teaching paper available on the Internet at: http://people. stern. nyu. edu/adamodar/pdfiles/papers/probabilistic. pdf (accessed Nov. 15, 2011).
Dosso, M., L. Cassi, and W. Mescheba. 2023. Towards regional scientific integration in Africa? Evidence from co-publications. Research Policy 52 (1): 104630.
Duan, Y., E. Dietzenbacher, B. Los, & C. Yang. 2021. How much did China's emergence as “the world's factory” contribute to its national income?. China Economic Review 69: 101658.
Falzon, L., E. Quintane, J. Dunn, and G. Robins. 2018. Embedding time in positions: Temporal measures of centrality for social network analysis. Social Networks 54: 168-178.
Finardi, U., and A. Buratti. 2016. Scientific collaboration framework of BRICS countries: an analysis of international coauthorship. Scientometrics 109 (1): 433-446.
Fujita, T. 2010. Mechanisms of international trust and cooperation under overlapping informal institutions: A theoretical consideration. AGLOS: journal of area-based global studies 1: 19-31.
Glanzel, W., and A. Schubert. 2005. Analyzing scientific networks through co-authorship. In H. F. Moed et al. (Eds.), Handbook of quantitative science and technology research (pp. 257–276). MA: Kluwer Academic Publishers.
Granovetter, M. S. 1973. The strength of weak ties. American journal of sociology 78 (6): 1360-1380.
Gui, Q., C. Liu, and D. Du. 2019. Globalization of science and international research collaboration: A network perspective. Geoforum 105: 1-12.
Hofman, D. L. 2020. Extraterritoriality and international organizations 1. In Recordkeeping in International Organizations (pp. 91-115). New York: Routledge.
Hou, L., Y. Pan, and J. J. Zhu. 2021. Impact of scientific, economic, geopolitical, and cultural factors on international research collaboration. Journal of Informetrics 15 (3): 101194.
Huynh, T., K. Hoang, and D. Lam. 2013, September. Trend based vertex similarity for academic collaboration recommendation. In international conference on computational collective intelligence (pp. 11-20). Berlin, Heidelberg: Springer.
Kato, M., and A. Ando. 2017. National ties of international scientific collaboration and researcher mobility found in Nature and Science. Scientometrics 110 (2): 673-694.
Lee, J. J., & J. P. Haupt. 2021. Scientific Globalism during a Global Crisis: Research Collaboration and Open Access Publications on COVID-19. Higher Education 81 (5): 949-966.
Makkonen, T., and T. Mitze. 2016. Scientific collaboration between ‘old’ and ‘new’ member states: Did joining the European Union make a difference?. Scientometrics 106 (3): 1193-1215.
Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrology 10 (3): 282-290.
Parreira, M. R., K. B. Machado, R. Logares, J. A. F. Diniz-Filho, and J. C. Nabout. 2017. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics 113 (3): 1539-1550.
Schubert, T., and R. Sooryamoorthy. 2010. Can the centre–periphery model explain patterns of international research collaboration among threshold and industrialised countries? The case of South Africa and Germany. Scientometrics 83 (1): 181-203.
Su, J., B. Liu, Q. Li, and H. Ma. 2014. Coevolution of opinions and directed adaptive networks in a social group. Journal of Artificial Societies and Social Simulation 17 (2): 4.